• Title/Summary/Keyword: Deicing method

Search Result 27, Processing Time 0.025 seconds

Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer (열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

A Quantitative Evaluation on Steel Corrosion by Polarization Resistance Method (분극저항법에 의한 철근부식의 정량적 평가)

  • 정우용;손영무;윤영수;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.688-693
    • /
    • 2000
  • Recently great efforts and investment have been made in order to evaluate concrete durability by steel corrosion. But most of study is relatively or qualitatively estimated, therefore it has a great limitation in evaluating a remaining service life of concrete. In this research, steel corrosion rate was measured quantitatively by polarization resistance method and multi-regressed considering chloride, carbonation, coverage depth, relative humidity, W/C, and the use of deicing salts. And a half cell potential method was used at th same time for the purpose of comparing with polarization resistance method.

  • PDF

A Case Study on Chloride Corrosion for the End Zone of Concrete Deck Subjected to De-icing Salts Added Calcium Chloride (염화칼슘이 함유된 제설제로 인한 콘크리트 바닥판 단부의 염해에 관한 사례 연구)

  • Chung, Jee-Seung;Kim, Bo-Heon;Kim, Il-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.87-93
    • /
    • 2014
  • In this study, the reinforced concrete rahmen bridge damaged by the chloride attack was investigated. According to the investigation, the degraded concretes on cantilever kerb and end part were intensively observed. Thus, the chloride content test and half-cell method were performed to evaluate the degraded parts. As a result, the contents of chloride on degraded parts were C and D grade. On the other hand, the half-cell potential values of rebar in degraded concrete were measured with the minor corrosion. This rebar corrosion is expected to progressing. Chloride content D grade is due to expansion pressure by corrosion of rebar and freeze-thaw by permeate water, could see progresses rapidly degradation. In order to prevent chloride attack to concrete deck caused by deicing salts, corresponding to the chloride critical concentration must maintain grade b or at least grade c. Chloride condition evaluation standard apply to evaluation of marine structure chloride attack with chloride attack by deicing salts.

An Experimental Approach to Investigate the Heat Transferring Effect of Carbon Nanotube on the Concrete Slab (실내실험을 통한 Carbon Nanotube의 콘크리트슬래브 열전달 효과)

  • Kim, Heesu;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.59-63
    • /
    • 2017
  • In the cold region, road surface is frequently frozen, resulting in property/facility damage as well as people's death. In order to prevent the road surface from being frozen, conventional deicing methods such as salt, geothermal, and electric wires have been widely used. However, theses methods have some problems such as anti-environment, high-construction and -maintenance cost and so on. To improve the drawbacks of aforementioned methods, carbon nanotube (CNT) was used as an heating material in the laboratory test. Through the test, heat transferring effect of CNT on the concrete slab was investigated and maximum interval of CNT installation was determined.

Coupled diffusion of multi-component chemicals in non-saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Xi, Yunping
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.201-222
    • /
    • 2013
  • A comprehensive simulation model for the transport process of fully coupled moisture and multi-species in non-saturated concrete structures is proposed. The governing equations of moisture and ion diffusion are formulated based on Fick's law and the Nernst-Planck equation, respectively. The governing equations are modified by explicitly including the coupling terms corresponding to the coupled mechanisms. The ionic interaction-induced electrostatic potential is described by electroneutrality condition. The model takes into account the two-way coupled effect of moisture diffusion and ion transport in concrete. The coupling parameters are evaluated based on the available experimental data and incorporated in the governing equations. Differing from previous researches, the material parameters related to moisture diffusion and ion transport in concrete are considered not to be constant numbers and characterized by the material models that account for the concrete mix design parameters and age of concrete. Then, the material models are included in the numerical analysis and the governing equations are solved by using finite element method. The numerical results obtained from the present model agree very well with available test data. Thus, the model can predict satisfactorily the ingress of deicing salts into non-saturated concrete.

Evaluation of Concrtet Properties Using Silicon-Based Repellent (실리콘기반 침투강화제를 사용한 콘크리트의 내구특성 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Lee, Byung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • Currently, the most commonly used decontamination agent in the country is calcium chloride, and the use of decontamination agents nationwide is on the rise due to climate change in the country. The deicing agent, aimed at deicing snow, is sprayed and the chloride is frozen and thawed by the dissolved surface water, causing various damages such as deterioration to the concrete. Therefore, in this study, the reactive urethane polymer was manufactured to coat concrete surface protection material, which is a method that prevents moisture from externally penetrating by applying to concrete surfaces, and the mixing agent was selected through the size control of molecules and surface modification, and the properties of penetrant stiffening agents and the application method of concrete was evaluated.

Integrated Experimental-Numerical Approach to Investigate the Heat Transferring Effect of Carbon Nanotube on the Concrete Slab (실내실험 및 수치해석을 통한 Carbon Nanotube의 콘크리트슬래브 열전달 효과 검증)

  • Kim, Hee Su;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • This paper presents a method to deice concrete pavement with carbon nanotube(CNT) as an heating material so as to avoid the adverse effects of conventional deicing method such as salt on the structure, function and environment. To this end, laboratory tests integrated with numerical simulations were conducted. In the laboratory tests, the CNT was embedded inside the concrete slab and generated the heat up to the target temperature of $60^{\circ}C$ in the freezer at temperature of $-10^{\circ}C$. Then, the surface temperature was measured to investigate how far the heat transfers on the surface at temperature of above $0^{\circ}C$. Also, three different spacings of 15, 20 and 30cm between CNTs were conducted to determine the maximum allowable spacing of CNT. Along with these experimental tests, heat transferring analysis conducted to validate the test results.

Corrosion Level of RC Concrete Specimen Intermittently Attacked by Sea Water (해수간헐침투되는 철근콘크리트의 부식도 평가)

  • 정철희;정영수;최응규;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.207-212
    • /
    • 1996
  • Recently, massive concrete structures exposed to salt from ocean marine environments, or from winter deicing. The corrosion caused by chloride-penetration may affect severey the durability and service life of such a concretestructures. Thus, it is necessary to develop durable concrete to enhance the corrosion resistance. In this study, we investigate the usage of adequate corrosion-protection materials in order to reduce permability-coefficient of concrete and method of enhancing the durability of concrete structures using by penetrating corrosion-protection materials.

  • PDF

The Effect of Corrosion Inhibitors Influencing on the Corrosion of Reinforced Steel in Mortar Specimen Immersed in Sea Water for Seven Years (해수중 7년간 침지된 몰탈시험편의 철근부식에 미치는 부식억제제의 효과)

  • 정진아;남진각;문경만;이명훈;김기준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.211-216
    • /
    • 1998
  • Recently the shortage of good aggregate has encouraged the use of sea sand in construction field, and the corrosion damage of the reinforced steel in concrete structures has been increased due to chlorides from sea sand and deicing salt. Therefore, a number of researchs are proceeding to prevent the corrosion of the reinforced steel in concrete, especially in marine environments. This study focused on the effect of corrosion inhibitors to evaluate protection characteristics for mortar specimens containing clorides. Corrosion behaviors have been investigated by half-cell potential measurement, linear polarization method, AC impedance method, and cyclic polarization test after immersing in sea water for 7 years. A possitive effect of a corrosion inhibitor has been obtained.

  • PDF

An Experimental Study for the Effective Use Scheme of Snow Removal Materials on Road (도로 제설재의 효과적 사용방안에 관한 실험적 연구)

  • Do, Jongnam;Kim, Taesoo;Lee, Chanbok;Kim, Yeonjoong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.5-17
    • /
    • 2012
  • The amount of snow due to global warming and climate change has recently increased. The effective management of snow removal materials will be required. First, on the basis of domestic winter temperature, it is not necessary to get a baseline to less than the freezing point of $-52^{\circ}C$ for the calcium chloride($CaCl_2$) of 30%.. In terms of cost comparison between calcium chloride($CaCl_2$) and sodium chloride($NaCl$), the calcium chloride($CaCl_2$) is 2 to 3 times more expensive, and the supply of the calcium chloride($CaCl_2$) is not produced in domestic country and is in the conditions that have to imports all needed. Accordingly, the effective use scheme of snow removal materials should be considered to multifaceted ways. Thus, the objective of this study is to develop effective method and to replace from calcium choride($CaCl_2$) to sodium chloride($NaCl$) solution in the current snow removal operating system that uses a pre-wetted salt spreading method. The effective method that equals to the quality of the existing snow removal materials was developed in this study through performance tests for deicing chemicals, corrosion test of steel and freezing and thawing tests of concrete.