• Title/Summary/Keyword: Degrees of slope

Search Result 114, Processing Time 0.029 seconds

Effect of the Degreess of Slope and the Types of Animal Manures on Corn Productivity and Nutrient Runoff in Corn Cultivation Soil (경사도와 분뇨의 처리 형태가 옥수수 생산성과 양분의 유실에 미치는 영향)

  • Yook, Wan-Bang;Choi, Ki-Chun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • This study carried out to investigate the effects of the types of animal manure and the dogies of the slope on productivity of com and the runoff of nitrogen and phosphorus in corn cultivation soil. Main plots were consisted of the degrees of slope, such as $0\%\;9\%$ and $18\%$ and the subplots on consisted of the types of animal manure, such as chemical fertilizer (CF), compost of swine manure fermented with sawdust (CSMFS), and cattle slurry (CS). Erosion was constructed with 0.33 m width, 3 m length and 0.4 m height. The results obtained were summarized as follows; 1. Dry matter(DM) yield of corn decreased by an enhancement of the degrees of slope DM yield reveals that there is an increase in order CS > CF > CSMFS. 2. Nitrogen contents of the whole corn reveals that there is an increase in order CF>CS>CSMFS. However, nitrogen content was not affected by the degrees of slope. 3. Nitrogen yields (NY) of com decreased by an enhancement of the degrees of slope. NY of CS increased more than 2.0 fold as compared CSMFS. 4. Mineral nitrogen content in the runoff during the experiment was hardly influenced by both the degrees of slope and the types of animal manure. 5. $NO_3$ - N in the runoff during the experiment increased by an enhancement of the degrees of slope. 6. In the degrees of slope used in this experiment, $NH_4$-N and $PO_4$-P content in runoff was lower than 8 ug / ul and 1 ug/ul, respectively.

Effects of Drilling Degrees of Freedom in the Finite Element Modeling of P- and SV-wave Scattering Problems

  • Kim, Jae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.37-43
    • /
    • 1999
  • This paper deals with a hybrid finite element method for wave scattering problems in infinite domains. Scattering of waves involving complex geometries, in conjunction with infinite domains is modeled by introducing a mathematical boundary within which a finite element representation is employed. On the mathematical boundary, the finite element representation is matched with a known analytical solution in the infinite domain in terms of fields and their derivatives. The derivative continuity is implemented by using a slope constraint. Drilling degrees of freedom at each node of the finite element model are introduced to make the numerical model more sensitive to the transverse component of the elastodynamic field. To verify the effects of drilling degrees freedom and slope constraints individually, reflection of normally incident P and SV waves on a traction free half spaces is considered. For the P-wave incidence, the results indicate that the use of slope constraint is more effective because it suppresses artificial reflection at the mathematical boundary. For the SV-wave case, the use of drilling degrees freedom is more effective by reducing numerical error at irregular frequencies.

  • PDF

Workload Evaluation of Various Shoulder Posture by using Muscle Force, Fatigue and Psychophysical Workload

  • Park, Ji-Soo;Kim, Jung-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.281-289
    • /
    • 2012
  • Objective: The purpose of this study is to evaluate the potential risk of shoulder muscle at particular working postures in sitting. Background: The cause of shoulder pain needs to be specifically studied in relation with particular shoulder postures to prevent shoulder MSDs in workplace. Method: In this study MVC, fatigue and subjective workload were investigated depending on the change of shoulder posture. An experiment was designed to evaluate the six shoulder muscles at nine shoulder postures including the combination of 30(adduction), 0, 30(abduction) degrees and 60, 90, and 120 degrees of shoulder flexion. Surface electrodes were attached to the middle trapezius, inferior middle trapezius, anterior deltoid, posterior deltoid, serratus anterior and teres major. Thirteen subjects participated in the experiment. Dependent variables were RPE (rating of perceived exertion), MVC(maximum voluntary contraction) and MPF(mean power frequency) shift by EMG (electromyography). Results: The middle trapezius and inferior middle trapezius were not significantly fatigued at all postures. The decline of MPF slope was less than 10% at all postures. The anterior deltoid was significantly fatigued all postures. The decline of MPF slope was more than 10% at all postures. The posterior deltoid was significantly fatigued 30 degrees of adduction and 90 degrees of flexion. And, neutral and 30 degrees of abduction postures were fatigued more than 90 degrees of flexion. The serratus anterior was significantly fatigued except for 30 degrees of adduction and 60 degrees of flexion posture. The teres major was significantly fatigued except for neutral and 60 degrees of flexion, 30 degrees of abduction and 60 degrees of flexion posture. Conclusion: It was found that a certain muscle was fatigued fast at particular posture compared to other muscles, which would mean that a certain shoulder muscle at particular posture could be easily exposed to the risk of musculoskeletal disorders than other muscles. Application: It is expected that the result can be applied to design workplace using shoulder muscles.

Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature (하천 만곡률과 홍수량에 따른 수면경사도 산정)

  • Choi, Han-Kyu;Lee, Mun-Hee;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

Undrained Shear Strength of Clay and Stability of Sub]marine Slope Undergoing Rapid Deposition (점토의 비배수 전단강도와 지적성퇴적에 의한 해저사면의 안정성)

  • 김승열
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.5-18
    • /
    • 1988
  • A series of CU triaxial compression tests were conducted to investigate the variation of -untrained shear strength of underconsolidated clay at different degrees of consolidation. The soil samples were artificially made by one-dimensional consolidation using soft Bangkok Clay. The test results showed that the undrained shear strength of clay parabolically increased convoking downward with increasing degrees of consolidation. However, all the measured shear strength were unanimously related to the effective stress. These experimental results were used in the numerical analysis. A finite element computer program was developed to investigate the stability of submarine .slope undergoing rapid deposition taking into account the variation in soil compressibility and permeability during the consolidation process. The relationships of degree of consolidation with time as a function of rate of deposition and angle of slope were established. A method of predicting the time of slope failure and the volume of moving mass of soil was also made.

  • PDF

Analytical Osteotomy Model for Three-dimensional Surgical Planning of Opening Wedge High Tibial Osteotomy (개방형 근위경골절골술의 3차원 수술계획을 위한 절골해석모델)

  • Koo, Bon-Yeol;Park, Byoung-Keon;Choi, Dong-Kwon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.385-398
    • /
    • 2013
  • Opening wedge high tibial osteotomy (OWHTO) is widely used to treat unicompartmental osteoarthritis of the knee caused by degenerative deformations of the anatomical axes of the leg. However, since it is difficult to accurately plan the surgical degrees of adjustment such as coronal correction angle and tibial posterior slope angle to align the axes before the actual procedure, a number of studies have proposed analytical models to solve this problem. While previous analytical models for OWHTO were limited to specific cases, this study proposes an analytical osteotomy model (AOM) and a surgical planning system (SPS) that are suitable for a wide range of tibial morphologies and tibia conditions. The validity and generality of the model were verified in a total of 60 OWHTO cases. Results of the test showed that, as predicted, surgical degrees are affected quite significantly by tibia shape and slope of the resected surface. Comparison of the required surgical degrees and the degrees estimated from virtual surgery simulations using AOM showed a very small average difference of $0.118^{\circ}$. SPS, based on AOM, allows the operating surgeon to easily calculate surgical parameters needed to treat a patient.

The Characteristice of Safety on a Slope of Pyroclastic Rock (화산쇄설암 사면의 안정 특성)

  • Kim, Byoung-Gon;Park, Sung-Kwon;Choi, Kil-Hyun;Baek, Seung-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.557-560
    • /
    • 2008
  • In this paper, it discusses about the stability of rock slope of pyroclastic rock, which can easily meet at construction site. Basically carry out the investigation about the development of a surface of discontinuity, too. With that, it refers to the basic groups of sedimentary rock, treats of general details about investigation of rock slope and stability analysis, and discusses general characteristics and stability analysis case study about rock slope of pyroclastic rock. Achieved basic geological investigation on rock slope of pyroclasic rock, and examine the stability of slope by doing limit equilibrium and geometric stability analysis due to the result of investigation. It is considered to be able to accumulate many data about slope design of pyroclastic rock hereafter estimating degrees of rock mass properties of pyroclastic rock quantitatively.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Tensile Strength of Clear Thin Wood Samples in Relation to the Slope of Grain

  • Cha, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.35-41
    • /
    • 2003
  • The mechanical and physical properties of wood are strongly dependent upon the slope of grain. Specially, tensile strength is more severely affected by the slope of grain. Therefore, tension tests were performed on small thin wood samples made from Pinus radiata with varying the slope of grain. Determining the tensile strength for clear thin wood samples the other variabilities associated with material, size, drying, defects, etc were discarded. Slope of grain was measured by the slope of grain indicator and actual slope of grain was also determined by a protractor. Correlation coefficients between machine measured and actual slope of grain for 40 pieces of 2×20 mm, 300 mm long Pinus radiata were 0.84 for wide face measurement. Results also showed that tensile strength and MOE from stress wave tests decreased with increasing the slope of grain. This study did not establish a relationships for tensile strength and MOE from stress wave with slope of grain. However, the trends of MOEs from stress wave test with both slope of grain are agreed well with Hankinson's equation. Predicted tension strength curve by Hankinson's equation was also agreed well with the experimental data over the range from 0 to 13 degrees for slope of grain.

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF