• 제목/요약/키워드: Degree of cementation

Search Result 27, Processing Time 0.033 seconds

Change of Geotechnical Properties of Sand due to Cementation (고결(Cementation)에 의한 모래의 지반공학적 특성 변화)

  • Lee, Moon-Joo;Kim, Seung-Han;Choi, Sung-Kun;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.153-160
    • /
    • 2006
  • In this study, the change of getechnical properties of sand due to cementation was investigated by undrained triaxial test of isotropicallv consolidated sample. For inducing the cementation, $5\sim20%$(sand weight) gypsum were included in the sand and cured in the mold under the overburden pressure 55kPa. The yielding strength and stiffness of cemented sand were increased and also the aspects of effective pore water pressure were changed as the degree of cementation and the relative density. Generally the degree of cementation exerted more influence on the behavior of cemented sand than the relative density.

  • PDF

Undrained Shear Behavior of Cemented Sand (고결모래의 비배수 전단거동)

  • Lee, Moon Joo;Choi, Sung Kun;Hong, Sung Jin;Lee, Woo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.181-190
    • /
    • 2006
  • The behavior of artificially cemented sands were investigated by undrained triaxial test of isotropically consolidated sample. The cementation were induced by gypsum that is generally used for the aitificial cementation of sands. The gypsum of 5~20%(sand weight) were included in the sand and cured in the mold under the overburden pressure 55kPa. The yielding strength and stiffness of cemented sand were increased as the degree of cementation. And the dilation of sand was restricted by the cementation bonds, but after breakage of the bonds, it was increased more abrupt than the uncemented sands. The effective stress path showed that the aspects of effective pore water pressure were changed as the degree of cementation and the relative density. The effective stress ratio of cemented sand in the phase transformation line and the failure line were changed by the cementation. Generally the behavior of cemented sand more influenced by the degree of cementation than the relative density.

Changes of Undrained Shear Behavior of Sand due to Cementation (고결(Cementation)에 따른 모래의 비배수 전단거동 변화)

  • Lee Woo-Jin;Lee Moon-Joo;Choi Sung-Kun;Hong Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.85-94
    • /
    • 2006
  • Triaxial tests at isotropic confining pressure of 200 kPa were carried out to show the undrained shear behavior of artificially cemented sands, which were cemented by gypsum, and the influences of relative density and DOC (degree of cementation) were investigated from the results. The yield strength, the elastic secant modulus at yield point and the peak frictional angle of cemented sands increased abruptly compared to uncemented sands, and it was checked that cementation exerts more influence on the behavior of sand than the relative density. But after breakage of the cementation bonds, the relative density was more important factor on the behavior of sand than the cementation. Because the compressibility md the excess pore pressure of cemented sands were reduced due to the cementation bonds, the effective stress path of cemented sands was going toward to the total stress path of uncemented sands. The cementation of sand restricted the dialtion of sand at the pre-yield condition, but induced more dilation in the post-yield condition.

Strength Characteristics of CSG material (CSG 재료의 강도특성에 관한 연구)

  • Park, Han-Gyu;Kim, Ki-Young;Cho, Sung-Eun;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.619-626
    • /
    • 2005
  • This work aims at studing the stress-strain-strength behavior of an CSG(cemented sand and gravel) materials. An analysis of the mechanical behavior of the CSG is performed from the interpretation of results by unconfined compression test, large triaxial compression test in which the influence of both the degree of cementation and age. For CSG, It was concluded that the characterristics of compression are direct measurment of the degree of cementation and age. In addition, hyperbolic model is adopted to express the relation between elastic moduli and cementation, age, confined stress in small strain. The results of the test show that clear correlation with each other

  • PDF

The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements

  • Barutcigil, Kubilay;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • PURPOSE. The aim of the present study was to determine the degree of conversion of light- and dual-cured resin cements used in the cementation of all-ceramic restorations under different thicknesses of translucent (T) and high-translucent (HT) polymer-infiltrated ceramic-network (PICN) material. MATERIALS AND METHODS. T and HT PICN blocks were prepared at 0.5, 1.0, 1.5, and 2.0 mm thicknesses (n=80). Resin cement samples were prepared with a diameter of 6 mm and a thickness of 100 ㎛. Light-cured resin cement was polymerized for 30 seconds, and dual-cure resin cement was polymerized for 20 seconds (n=180). Fourier transform infrared spectroscopy (FTIR) was used for degree of conversion measurements. The obtained data were analyzed with ANOVA and Tukey HSD, and independent t-test. RESULTS. As a result of FTIR analysis, the degree of conversion of the light-cured resin cement prepared under 1.5- and 2.0-mm-thick T and HT ceramics was found to be lower than that of the control group. Regarding the degree of conversion of the dual-cured resin cement group, there was no significant difference from the control group. CONCLUSION. Within the limitation of present study, it can be concluded that using of dual cure resin cement can be suggested for cementation of PICN material, especially for thicknesses of 1.5 mm and above.

A STUDY ON THE COMPLETE RETRIEVAL SYSTEM OF THE CEMENTATION TYPE IMPLANT ABUTMENT (손상 없이 영구 접착 보철물을 제거할 수 있는 cementation type 임플랜트 지대주 개발에 관한 연구)

  • Choi Jin-Ho;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.597-607
    • /
    • 2004
  • Purpose: This study was peformed to investigate the retrievability of the cemented crown from the cementation type implant abutment. Material and method: The cementation type implant abutments (NEOBIOTECH implant abutment regular, 3 degree taper, 10mm length, 4mm diameter, Ti grade III, machined surface. Hwasung, Kyunggi-do) and cemented crowns were divided into 3 groups, depending on their hole angles formed in the crowns for their retrievability. The abutments and crowns were luted with 4 kinds of cements and separation test using metal wedge was executed with Instron 4465 Universal Testing Machine and the maximum impact force of the modified crown ejector was measured. Results and conclusion : 1. All of the cementation type implant abutments and cemented crowns were separated with relatively small force by metal wedge. 2. The retrieving force was minimum when the metal wedge was applied perpendicular to the axis of abutment. 3. The force for retrieving crowns from abutments was maximum in resin cement group, and reduced in orders of zinc phosphate cement, glass ionomer cement and zinc oxide eugenol cement. 4. The maximum force obtained by the crown ejector was higher than the retrieval force in ZOE and GI cement and lower than that in ZPC and resin cement. 5. If it has similar conditions clinically, the cemented crowns luted with 2 types of cements (ZOE, GI cement) can be safely retrieved from the cementation type implant abutments by the modified crown ejector.

Elastic Wave Characteristics According to Cementation of Dissolved Salt (용해된 소금의 고결화에 따른 탄성파 특성)

  • Eom, Yong-Hun;Truong, Q. Hung;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.75-86
    • /
    • 2009
  • Salt, one of the most common soluble materials in engineering soil, may have an effect on mechanical behaviors of soils under its cementation process. In order to investigate this natural phenomenon, non-soluble material by using glass beads is mixed with salt electrolyte and cemented by using oven to evaporate water. Three different sizes of glass bead particles, 0.26, 0.5, and 1.29 mm, with different salt concentration, 0, 0.1, 0.2, 0.5, 1.0, and 2.0M, are explored by using P- and S-waves, excited by bender elements and piezo disk elemets, respectively. The velocities of the P-wave and S-wave of the particulate medium cemented by salt show three stages with the degree of saturation: 1) S-wave velocities increase while P-wave velocities reduce with degree of saturation changing from 100% to 90%; 2) Both velocities are stable with degree of saturation varying from 90% to 10%; 3) The velocities change enormously when the specimens are nearly dry with degree of saturation from 10% to 0%. Besides, the resonance frequencies of S-wave show similar stages to the S-wave velocities. This study demonstrates meaningful trends of elastic wave characteristics of geo-materials according to the cementation of dissolved salt.

A Study on Improvement of Marine Clay through the Leaching Effect of Electrolyte Reaction in Electrode (전극의 전기분해 용출을 통한 해성점토의 개량에 관한 연구)

  • Han, Sang-Jae;Kim, Soo-Sam;Kim, Jong-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.89-98
    • /
    • 2006
  • In this study, the iron and aluminium electrode was put in marine clay which was taken from south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitation which was developed by electrode decomposition. For raising the cementation rate and reducing treatment time, high electric current( 2.5A) was applied in each electrode at semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. The iron electrode decomposition test results show that the water content adjacent to anode section decreased in 35% and increased in 13% at cathode section. The measured shear strength however, was increased considerably comparing to initial shear strength because of cementation effect between iron ions and soil particles. In case of aluminium electrode decomposition test, the distribution of measured shear strength and degree of improvement were more homogeneous than iron electrode decomposition test.

Study on mechanical properties of Yellow River silt solidified by MICP technology

  • Yuke, Wang;Rui, Jiang;Gan, Wang;Meiju, Jiao
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2023
  • With the development of infrastructure, there is a critical shortage of filling materials all over the word. However, a large amount of silt accumulated in the lower reaches of the Yellow River is treated as waste every year, which will cause environmental pollution and waste of resources. Microbial induced calcium carbonate precipitation (MICP) technology, with the advantage of efficient, economical and environmentally friendly protection, is selected to solidify the abandoned Yellow River silt with poor mechanical properties into high-quality filling material in this paper. Based on unconfined compressive strength (UCS) test, determination of calcium carbonate (CaCO3) content and scanning electron microscope (SEM) test, the effects of cementation solution concentration, treatment times and relative density on the solidification effect were studied. The results show that the loose silt particles can be effectively solidified together into filling material with excellent mechanical properties through MICP technology. The concentration of cementation solution have a significant impact on the solidification effect, and the reasonable concentration of cementation solution is 1.5 mol/L. With the increase of treatment times, the pores in the soil are filled with CaCO3, and the UCS of the specimens after 10 times of treatment can reach 2.5 MPa with a relatively high CaCO3 content of 26%. With the improvement of treatment degree, the influence of relative density on the UCS increases gradually. Microscopic analysis revealed that after MICP reinforcement, CaCO3 adhered to the surface of soil particles and cemented with each other to form a dense structure.

Analysis of Steep Cuts and Slopes in Cemented Sand Using Fracture Mechanics (파괴역학을 이용한 경화모래로 이루어진 사면의 해석)

  • Kim, Tae-Hoon;Kang, Kwon-Soo;Lee, Jong-Cheon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.161-168
    • /
    • 2003
  • Most natural deposits of sandy soil possess some degree of cementation resulting from the deposition and precipitation of cementing agents. The presence of cementation can have a significant influence on the stiffness and volume change behavior, and the strength of soils. An important feature of deposits of cemented sandy soils is their ability to remain stable in surprisingly high and almost vertical man-made cuts as well as natural slopes. Numerous field observations and studies of failures in slopes of cemented soils have reported that application of conventional analysis techniques of slope stability is inadequate. That is not only due to the fact that the failure surface of the slope is not circular, but also the fact that the average shear stress along the failure surface is much smaller than the shear strength measured in laboratory shear experiments. This observation alerts us to the fact that a mechanism different from conventional Mohr-Coulomb shear failure takes place, which may be related to fracture processes, which in turn are governed by fracture mechanics concepts and theory. In this study, steep slopes in cemented sand were assessed using fracture mechanics concepts. The results showed that FEM coupled with fracture mechanics concepts provides an excellent alternative in the design and safety assessment of earth structures in cemented soils.