The paper discusses the problem of how to allocate the fund to a large number of individuals in a higher school so as to bring a higher utility return based on the theory of uncertain set. Suppose that experts can assign each invested individual a corresponding nondecreasing membership function on a close interval I according to its actual level and developmental foreground. The membership degree at the fund $x{\in}I$ is called utility degree from fund x, and product (minimum) of utility degrees of distributed funds for all invested individuals is called united utility degree from the fund. Based on the above concepts, we present an uncertain optimization model, called Maximal United Utility Degree (or Maximal Membership Degree) model for fund distribution. Furthermore, we use nondecreasing polygonal functions defined on close intervals to structure a mathematical maximal united utility degree model. Finally, we design a genetic algorithm to solve these models.
The degree of hesitancy of a vertex in a hesitancy fuzzy graph depends on the degree of membership and non-membership of the vertex. We define a new class of hesitancy fuzzy graph, the intuitionistic hesitancy fuzzy graph in which the degree of hesitancy of a vertex is independent of the degree of its membership and non-membership. We introduce the idea of β-product of a pair of hesitancy fuzzy graphs and intuitionistic hesitancy fuzzy graphs and prove certain results based on this product.
IEIE Transactions on Smart Processing and Computing
/
제4권4호
/
pp.209-215
/
2015
Fuzzy c-means method is typical soft clustering, and requires a degree of membership that indicates the degree of belonging to each cluster at the time of clustering. Parameter values greater than 1 and less than 2 have been used by convention. According to the proposed data-generation scheme and the simulation results, some behaviors in the degree of "fuzziness" was derived.
There are several kinds of fuzzy set extensions in the fuzzy set theory. Among them, this paper is concerned with interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets. In interval-valued fuzzy sets, membership degrees are represented by an interval value that reflects the uncertainty in assigning membership degrees. In intuitionistic fuzzy sets, membership degrees are described with a pair of a membership degree and a nonmembership degree. In bipolar-valued fuzzy sets, membership degrees are specified by the satisfaction degrees to a constraint and its counter-constraint. This paper investigates the similarities and differences among these fuzzy set representations.
There are several kinds of fuzzy set extensions in the fuzzy set theory. Among them, this paper is concerned with interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets. In interval-valued fuzzy sets, membership degrees are represented by an interval value that reflects the uncertainty in assigning membership degrees. In intuitionistic sets, membership degrees are described with a pair of a membership degree and a nonmembership degree. In bipolar-valued fuzzy sets, membership degrees are specified by the satisfaction degrees to a constraint and its counter-constraint. This paper investigates the similarities and differences among these fuzzy set representations.
대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
/
pp.447-450
/
2004
This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.
본 논문에서는 컬러 영상에 삼각형 타입의 소속 함수를 적용하여 스트레칭의 상한과 하한을 동적으로 설정하여 컬러영상을 퍼지 스트레칭 하는 방법을 제안한다. 제안된 퍼지 스트레칭 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀 값의 거리를 계산하여 밝기의 조정률을 결정한 후, 최소 밝기 값과 최대 밝기 값을 구하고 삼각형 타입 소속 함수의 구간에 적용한다. 영상의 픽셀 값들을 소속 함수에 적용하여 소속도를 구하고 가장 낮은 픽셀 값을 스트레칭 하한으로 설정하고 가장 높은 픽셀 값을 스트레칭 상한으로 설정하여 컬러 영상을 스트레칭 한다. 다양한 영상에 적용한 결과, 앤드인 탐색 방법보다 제안된 퍼지 스트레칭 방법이 효율적인 것을 확인하였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제1권1호
/
pp.1-5
/
2001
In this paper, we propose a fuzzy traffic controller that is able to cope with traffic congestion appropriately. In order to consider such situation as loss of green time caused by spillback of upper crossroad, it imports a degree of traffic congestion of upper roads which vehicles on a crossroad are to proceed to. We constructed the equal-partitioned fuzzy traffic controller that uses the membership functions of the same size and shape, and modified the size and shape, and modified the size and shape of its membership functions by the membership function modification algorithm. In experiment, we compared and analyzed the fixed signal controller, the fuzzy traffic controller with the membership of the same size and shape, and the modified fuzzy traffic controller by using the delay time, the proportion of entered vehicles to occurred vehicles and the proportion of passed vehicles to entered vehicles. As a result of experiment, the modified fuzzy controller showed more enhanced performance than others.
This paper introduces the method to develop two main types of the fuzzy OEE (Overall Equipment Effectiveness) models via triangular membership function for measuring uncertainty. The fuzzy OEE includes model type 1 and model type 2. The model type 1 is used when the theoretical machine speed only reflects the time loss whereas model type 2 is used when the actual machine speed reflects both time and speed loss. Model type 2 has shown to perform a lower availability rate and a higher performance rate compared to model type 1. In addition, the fuzzy UPH (Unit Per Hour) which is derived from using the fuzzy OEE is presented to satisfy demand uncertainty. The fuzzy UPH can easily measure the fuzzy tact time and cycle time by reciprocating itself. Finally, this study demonstrates the fuzzy OEE models using IVIFS (Interval-Valued Intuitionistic Fuzzy Set) based on the characterization via membership function, non-membership function and hesitant function. For the purpose of analyzing the fuzzy system OEE, the OEE for each machine of plant structure is considered triangular interval-valued intuitionistic fuzzy number. Regardless of plant structure, the validity degree of fuzzy membership function of system OEE decreases when the number of machine with worst value of the validity degree increases. Corresponding examples are presented in this paper for practitioner to understand the applicability and practicability of the proposed fuzzy OEE methods.
강화학습을 적용하기에 적합한 많은 실세계의 제어 문제들은 연속적인 상태 또는 행동(continuous states or actions)을 갖는다. 연속 값을 갖는 문제인 경우, 상태공간의 크기가 거대해져서 모든 상태-행동 쌍을 학습하는데 메모리와 시간상의 문제가 있다. 이를 해결하기 위하여 학습된 유사한 상태로부터 새로운 상태에 대한 추측을 하는 함수 근사 방법이 필요하다. 본 논문에서는 1-step Q-learning의 함수 근사를 위하여 퍼지 클러스터링을 기초로 한 Fuzzy Q-Map을 제안한다. Fuzzy Q-Map은 데이터에 대한 각 클러스터의 소속도(membership degree)를 이용하여 유사한 상태들을 군집하고 행동을 선택하고 Q값을 참조했다. 또한 승자(winner)가 되는 퍼지 클러스터의 중심과 Q값은 소속도와 TD(Temporal Difference) 에러를 이용하여 갱신하였다. 본 논문에서 제안한 방법은 마운틴 카 문제에 적용한 결과, 빠른 수렴 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.