• Title/Summary/Keyword: Degree of Crystallinity

Search Result 222, Processing Time 0.033 seconds

Effects of Strain-Induced Crystallization on Mechanical Properties of Elastomeric Composites Containing Carbon Nanotubes and Carbon Black (탄소나노튜브 및 카본블랙 강화 고무복합재료의 변형에 의한 결정화가 기계적 특성에 미치는 영향)

  • Sung, Jong-Hwan;Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.999-1005
    • /
    • 2011
  • The effects of strain-induced crystallization (SIC) on the mechanical properties of elastomeric composites as functions of extension ratio (${\lambda}$), multiwalled carbon nanotube (CNT) content, and carbon black (CB) content are investigated. The differential scanning calorimetry (DSC) analysis shows that the degree of crystallinity increases with the increase in the CB and CNT content. As ${\lambda}$ increases, the glass transition temperature (Tg) of the composites increases, and the latent heat of crystallization (LHc) of the composites is maximum at ${\lambda}$=1.5. It is found that the mechanical properties have a linear relation with LHc, depending on the CNT content. According to the TGA (thermogravimetric analysis), the weight loss of the composite matrix is 94.3% and the weight of the composites decreases with the filler content. The ratio of tensile modulus ($E_{comp}/E_{matrix}$) is higher than that of tensile strength (${\sigma}_{comp}/{\sigma}_{matrix}$) because of the CNT orientation inside the elastomeric composites.

Effect of Lithium Bromide on Chitosan/Fibroin Blend (키토산/피브로인 블렌드에 있어서 브롬화 리튬의 효과)

  • Kim, Hong-Sung;Park, Sang-Min;Yoon, Sang-Jun;Hwang, Dae-Youn;Jung, Young-Jin
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.509-513
    • /
    • 2009
  • For examining an effect of lithium bromide on structure and property of chitosan/fibroin blend, we investigated the structural characteristic of chitosan/fibroin blend films using solution with lithium bromide which was removed during a casting. The chitosan/fibroin blend formed a complex with the dissolved bromine/lithium ions. The crystalline phase of the complex was found in the blend film at LiBr concentration of 0.6 mol/L. The degree of crystallization was decreased with increasing the concentration of LiBr. The hydrated crystalline phase of chitosan was formed in the blend film that lithium bromide was removed in the process of casting by neutralization and osmotic action. The crystallinity of this film was increased largely as compared with that of the film without lithium bromide. The complexed blend film formed hydrogel absorbing plenty of water.

Fabrication of ZnS Powder by Glycothermal Method and Its Photocatalytic Properties (Glycothermal법에 의한 ZnS 분말 합성 및 광촉매 특성)

  • Park, Sang-Jun;Lim, Dae-Young;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.489-494
    • /
    • 2017
  • ZnS powder was synthesized using a relatively facile and convenient glycothermal method at various reaction temperatures. ZnS was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate and thiourea as raw materials, and diethylene glycol as the solvent. No mineralizers or precipitation processes were used in the fabrication, which suggests that the spherical ZnS powders were directly prepared in the glycothermal method. The phase composition, morphology, and optical properties of the prepared ZnS powders were characterized using XRD, FE-SEM, and UV-vis measurements. The prepared ZnS powders had a zinc blende structure and showed average primary particles with diameters of approximately 20~30 nm, calculated from the XRD peak width. All of the powders consisted of aggregated secondary powders with spherical morphology and a size of approximately $0.1{\sim}0.5{\mu}m$; these powders contained many small primary nanopowders. The as-prepared ZnS exhibited strong photo absorption in the UV region, and a red-shift in the optical absorption spectra due to the improvement in powder size and crystallinity with increasing reaction temperature. The effects of the reaction temperature on the photocatalytic properties of the ZnS powders were investigated. The photocatalytic properties of the as-synthesized ZnS powders were evaluated according to the removal degree of methyl orange (MO) under UV irradiation (${\lambda}=365nm$). It was found that the ZnS powder prepared at above $175^{\circ}C$ exhibited the highest photocatalytic degradation, with nearly 95 % of MO decomposed through the mediation of photo-generated hydroxyl radicals after irradiation for 60 min. These results suggest that the ZnS powders could potentially be applicable as photocatalysts for the efficient degradation of organic pollutants.

Dependence of the Structural, Electrical, and Optical Properties of Al-doped ZnO Films for Transparent Conductors on the Process Atmosphere in Magnetron Sputtering (마그네트런 스퍼터링법으로 증착한 투명전극용 Al도핑된 ZnO의 공정 분위기에 따른 구조적, 전기적, 광학적 특성비교)

  • Yim, Keun-Bin;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.518-520
    • /
    • 2005
  • Effects of the $O_2/Ar$ flow ratio in the sputtering process on the crystallinity, surface roughness, carrier concentration, carrier mobility, and optical properties of Al-doped ZnO thin films deposited on sapphire (001) substrates by RF magnetron sputtering were investigated. XRD spectra showed a preferred orientation along the c-axis and a minimum FWHM of the (002) XRD intensity peak for the $O_2/Ar$ flow ratio of 0.5. The (101)peak also appeared and the degree of preferred orientation decreased as the $O_2/Ar$ flow ratio increased from 0.5 to 1.0. AFM analysis results showed that the surface roughness was lowest at the $O_2/Ar$ flow ratio of 0.5 and tended to increase owing to the increase of the grain size as the $O_2/Ar$ flow ratio increased further. According to the Hall measurement results the carrier concentration and carrier mobility of the fan decreased and thus the resistivity increased as the $O_2/Ar$ flow ratio increased. The transmittance of the ZnO:Al film deposited on the glass substrate was characteristic of a standing wave. The transmittance increased as the $O_2/Ar$ flow ratio in-RF magnetron sputtering increased up to 0.5. Considering the effects of the $O_2/Ar$ flow ratio on the surface roughness, electrical resistivity and transmittance properties of the ZnO:Al film the optimum $O_2/Ar$ flow ratio was 0.5 in the RF magnetron sputter deposition of the ZnO:Al film.

High-quality ZnO nanowire arrays directly synthesized from Zn vapor deposition without catalyst

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Choi, Bong-Geun;Kim, Hyoun-Woo;So, Dae-Sup;Lee, Joon-Woo;Park, No-Hyung;Huh, Hoon;Tung, Ngo Trinh;Ham, Heon;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.137-146
    • /
    • 2011
  • Vertically well-aligned ZnO nanowire (NW) arrays were synthesized directly on GaN/sapphire and Si substrate from Zn vapor deposition without catalysts. Experimental results showed that the number density, diameter, crystallinity and degree of the alignment of ZnO NWs depended strongly on both the substrate position and kind of the substrates used for the growth. The photoluminescence (PL) characteristics of the grown ZnO NW arrays exhibit a strong and sharp ultraviolet (UV) emission at 379 nm and a broad weak emission in the visible range, indicating that the obtained ZnO NWs have a high crystal quality with excellent optical properties. The as-grown ZnO NWs were characterized by using scanning electron microscopy (SEM), high resolution transmission electronic microscopy (HR-TEM), and X-ray diffraction (XRD).

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Rheological Properties During Mixing and Thermal Properties of Polypropylene/Natural Fiber Composites: II. Effects of A Compatibilizer (폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 및 열적 특성: II. 상용화제의 영향)

  • Kim, Sam-Jung;Yoo, Chong Sun;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • We investigated effects of a compatibilizer on the rheological properties during mixing and thermal properties of polypropylene (PP)-natural fiber composites. Two types of natural fibers (cotton fiber and wood fiber) were compared. maleic anhydride grafted PP was used for a compatibilizer. On increasing the amounts of the compatibilizer, the torque values of composites were increased, regardless of the kind of fibers. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results showed a slight increase in the degree of crystallinity with adding the compaibilizing agent, while the effects of the kind of fibers were marginal. It may be considered, however, the cotton fiber exhibits better interaction with PP-g-MAH than the natural fiber based on the rheographs, DSC, and XRD results.

  • PDF

Grafting of MMA onto MCC through free radical method and its application to all natural cellulose composite film preparation (Microcrystalline cellulose에 자유 라디칼을 이용한 methyl methacrylate의 그래프팅 반응과 이를 이용한 천연복합필름의 제조)

  • Lee, Soo;Park, Sang-Hee;Jin, Seok-Hwan;Lee, Sun-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.459-468
    • /
    • 2008
  • Methyl methacrylate(MMA) was grafted onto microcrystalline cellulose(MCC) with ceric ammonium nitrate(CAN) as a redox initiator at the various conditions. The cellulose triacetate(CTA) composite films added MCC and MMA-grafted MCC powders were prepared on a glass plate. The graft yield(GY) and graft efficiency(GE) of the grafted MCC were calculated with the simple equations by the weight balance method. The double bond of C=O on the grafted MCC surfaces was confirmed by the fourier transform infrared spectroscopy with attenuated total reflection(FT-IT ATR) spectrophotometer. After grafting, the degree of crystallinity of cellulose powders was decresed by judging from x-ray diffraction(XRD) data. Scanning electron microscope(SEM) photos showed the only solvent and CAN solution could change the roughness of MCC powders and the effect of powder dispersions in composite matrix. The tensile strength of MCC/CTA composite films was decreased with increase of MCC powder contents. When 5% grafted MCC was added, the tensile strength of grafted MCC/CTA composite films was increased from 82.3 MPa to 97.2 MPa. The thermal property of powders was also analyzed by the thermogravimetric analysis(TGA).

Synthetic Characteristics of AlPO$_4$-5 Molecular Sieve (AlPO$_4$-5 분자체의 합성 특성)

  • Sung Hwa Jhung;Suk Bong Hong;Young Sun Uh;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.10
    • /
    • pp.867-873
    • /
    • 1993
  • Influences of crystallization time and $H_2O/Al_2O_3$ ratio of the reaction mixtures on the synthesis of AlPO$_4$-5 molecular sieve have been studied by X-ray powder diffraction, nitrogen adsorption, scanning electron microscope (SEM), and solid state $^{27}$Al magic angle spinning nuclear magnetic resonance (MAS NMR) techniques. The degree of crystallinity of AlPO$_4$-5 follows a sigmoid pattem as crystallization time increases. The induction period is shorter than 1 h when the crystallization process is carried out at 150$^{\circ}$C. The conversion of reactants to product, AlPO$_4$-5, can be clearly observed, and all of the determined physical properties change abruptly after about 2 h. It is found that increase in $H_2O/Al_2O_3$ ratio of the reaction mixtures not only changes the crystal morphology from aggregates to hexagonal single crystals, but also results in the formation of longer AlPO$_4$-5 crystals.

  • PDF

Quantitative Evaluation of Scratch Behavior for Polymeric Materials (고분자 소재의 스크래치 거동의 정량적 평가)

  • Baek, Ki-Wan;Lee, Sung-Goo;Lee, Jae-Heung;Choi, Kil-Yeong;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.273-283
    • /
    • 2009
  • Recent research issues on the scratch behaviors of polymeric materials has been investigated. In this study, the scratch characterization of polymeric materials with respect of experimental parameters, such as nature of the material, temperature, applied load, test speed, surface treatment, scratch number of times, polymer structure/functional groups, degree of cross-linking, and crystallinity, are reviewed. In addition, the testing standards and methodologies which could quantify the scratch behaviors are introduced and the current international standards are compared and summarized. The latest technical approaches for evaluating the scratch behaviors and improving the scratch resistance of polymers are also discussed.