• Title/Summary/Keyword: Degradation temperature

Search Result 2,188, Processing Time 0.034 seconds

The Study on Drag Reduction Rates and Degradation Effects in Synthetic Polymer Solution with Surfactant Additives (계면활성제를 이용한 합성고분자 수용액의 마찰저항감소 및 퇴화 특성 향상 연구)

  • 이동민;김남진;윤석만;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • The turbulent flow resistance of water solution with polymer is reduced as compared with that of pure water. This effects is named th drag reduction and offers the significant reduction of the pumping power and the energy consumption. But the intense shear forces and the high temperature experienced by the polymer solution when passing through the pipes cause the degradation a loss of drag reduction effectiveness. Especially, the degradation behavior is found to be strongly dependent on temperature. This mechanical and thermal degradation can be avoided by adding materials such as surfactant to the polymer solution, which enhance the bonding force between molecules. In the present study, Copolymer and SDS were utilized and they were mixed in 10 different mixture ratios, while total concentration was fixed as 100wppm. Degradation of Copolymer-SDS mixture solutions was investigated experimentally in closed loop at the temperature of $10^{\circ}C\; and\; 80^{\circ}C$ with various flow average velocities of 1.5 m/sec, 3.0m/sec, and 4.5m/sec. Degradation characteristics of polymer solution without surfactant show a radical loss of drag reduction effectiveness at high temperature. Degradation alleviation ability of surfactant is especially effective at high temperature. Consequently, this results show that the addition of surfactant to the polymer solution can control unfavorable degradation phenomena for high temperature systems.

  • PDF

Electric Current Accelerated Degradation Test Design for OLED TV (OLED TV Panel의 전류가속열화시험 설계)

  • You, Ji-Sun;Lee, Duek-Jung;Oh, Chang-Suk;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the life time of OLED TV panel through electric current ADT(Accelerated Degradation Test). Methods: We performed accelerated degradation test for OLED TV Panel at the room temperature to avoid high temperature impact on the luminance. Results: we got more accurately the life time of the OLED TV when we applied ADT without temperature factor than including both current and temperature. Conclusion: Until now, the ADT of the OLED TV has been conducted with temperature and current at the same time for reducing test time and costs. We estimate incorrect life time when the temperature is adopted as an accelerated factor. Due to the high temperature impact on the luminance of the OLED TV panel. So as to solve this problem, we discard temperature and use electric current only.

Reaction Conditions for Laccase Catalyzed Degradation of Bisphenol A

  • Kim, Young-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.79-83
    • /
    • 2004
  • The oxidative degradation of BPA with laccase from Trametes versiclor was conducted in a closed, temperature controlled system containing acetate buffer for pH control. The effects of medium pH, buffer concentration, temperature and mediator on degradation of BPA were investigated. The inactivation of the enzyme by temperature and reaction product was also studied. The optimal pH for BPA degradation showed about 5. Buffer concentration did not affect BPA degradation. On the other hand, the enzyme stability was higher at low concentration buffer(25 mM). Temperature rise increased the degradation rate of BPA up to 45$^{\circ}C$. The valuable mediator of laccase for BPA was ABTS. Elevated temperature and reaction product irreversibly inactivated the enzyme.

The Effect of Gasoline Engine Oil Degradation and Piston Temperature on Carbon Deposit Formation; Part I-Characteristics of deposit formation on gasoline engine (엔진 오일 열화와 피스톤 온도가 카본 디포짓 형성에 미치는 영향 Part I-가솔린 엔진의 디포짓 형성 특성)

  • 김중수;민병순;이두순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.33-39
    • /
    • 1997
  • In order to establish a new temperature criterion to prevent the pistons from ring sticking due to deposit formation, bench test and engine test were performed. The effects of oil degradation and temperature on deposit formation was studied by a modified panel coking test. Oil degradation was analyzed by FTIR. Oil oxidation and nitration were selected as a factors to evaluate oil degradation. Bench test results show that oil oxidation is more effective to the deposit formation than oil nitration. And the temperature increase accelerates deposit formation and deposit formation increase rapidly above 26$0^{\circ}C$. Especially, in case of degraded oil, the deposit formation increases so rapidly that ring sticking can occur. The effect of piston temperature on the deposit formation was confirmed by engine test.

High-Temperature Degradation of Hot-Pressed $t-ZrO_2$ Co-doped with $Y_2O_3$ and $Nb_2O_5$ (Hot-press법으로 제조된 $Y_2O_3$$Nb_2O_5$가 첨가된 정방정 ZrO2의 고온열화)

  • 이득용;김대준;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.915-920
    • /
    • 1997
  • Tetragonal ZrO2 polycrystal (TZP), consisted of 90.24 mol% ZrO2-5.31 mol% Y2O3-4.45 mol% Nb2O5, were prepared using hot-press and mechanical properties and high-temperature degradation were investigated. The specimen, hot-pressed for 1 h at 140$0^{\circ}C$ in Ar atmosphere, exhibited flexural strength of 1010 MPa and fracture toughness of 7.5 MPam1/2 and experienced no low-temperature degradation below 40$0^{\circ}C$. However, as aged for 100h at temperatures higher than 40$0^{\circ}C$, TZP was suffered by high-temperature degradation due to an extensive cavitation caused by the oxidation of carbon. XPS observation revealed that the carbon incorporated in TZPs during hot-pressing exists as either an ether-type CO or a carbonyl-type C=O. Despite of the high-temperature degradation of t-ZrO2 co-doped with Y2O3 and Nb2O5, its flexural strength and fracture toughness were superior to those of the commercial 3 mol% Y2O3-TZP hot-pressed under the identical condition as determined before and after the aging treatments.

  • PDF

An Accelerated Degradation Test of Nuclear Power Plants Communication Cable Jacket (원자력 발전소용 통신케이블 자켓의 가속열화시험)

  • Jung, Jae Han;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.969-980
    • /
    • 2017
  • Purpose: The purpose of this study was to estimate the lifetime, and verify the target lifetime at steady state temperature, of communication cable jackets used in nuclear power plants. Method: This study was completed according to test and analysis methods required by international standards. After measuring the residual elongation(%) of specimens at specific points in time with the accelerated degradation test, average failure time of each temperature was computed. Thus, the activation energy could be derived by applying the temperature-Arrhenius law to estimate cable jacket lifetime at steady state temperature. Results: The cable jacket lifetime was estimated as 363.8 years assuming a normal nuclear power plant operating temperature of $90^{\circ}C$. Conclusion: To ascertain stable operating conditions for a nuclear power plant, accelerated degradation tests were performed according to the Arrhenius law for components of the nuclear power plants. The lifetime was estimated from the degradation data collected during the accelerated degradation test.

The flexural strength Changes by the Low Temperature Degradation of Uncolored zirconia Ceramic for All Ceramic Restoration (전부도재 수복을 위한 무색지르코니아 세라믹의 저온열화에 따른 굴곡강도 변화)

  • Kim, Jung-Sook
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.39-44
    • /
    • 2009
  • In the orthopedic field which firstly used zirconia as artificial joints, researchers had studied the reasons for collapsing zirconia used as restorative material by accumulated inner cracks in several years and they found out Low Temperature Degradation is one of the reasons. In the dentistry field, it has not been too long since they used zirconia as the cores of all-ceramic restoration; however, the study is needed as prophylactic measure against Low Temperature Degradation which can be caused by saliva wetting the mouth all the time and frictional forces such as bite pressure and masticatory pressure. Artificial aging by autoclaving is used because there are difficulties of testing in the patient's mouth. To study the changes in the material properties, the flexural strength of dental zirconia ceramic is measured before and after the test. The following are the result of the test. 1) The zirconia blocks in the autoclaves at $130^{\circ}C$ and $200^{\circ}C$ are phase-shifted tetragonal to monoclinic by Low Temperature Degradation. 2)The non-autoclaved specimens have the average fractural strength of 1346.4MPa, the specimens autoclaved at $130^{\circ}C$ have 1226.4Mpa and the specimens autoclaved at $200^{\circ}C$ have 1024.1MPa. The tests show that as the temperature increases, the flexural strength tend to decrease and the differences are noticeable(p<0.001). 3)Through the Duncan's post-hoc test, the differences in flexural strength of the 3 groups were listed in order of strength like normal temperature>at $130^{\circ}C$ autoclave low temperature degradation> at $200^{\circ}C$ autoclave low temperature degradation.

  • PDF

A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II) (12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II))

  • Kim, Chang-Hui;Seo, Hyun-Uk;Yoon, Kee-Bong;Park, Ki-Sung;Kim, Seoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF

Degradation of Reactive Black 5 by potassium ferrate(VI) (페레이트를 활용한 아조 염료 Reactive Black 5 분해 연구)

  • Minh Hoang Nguyen;Il-kyu Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.17-27
    • /
    • 2024
  • This paper aims to study the degradation process for refractory azo dye namely Reactive Black 5(RB5) by potassium ferrate(VI) synthesized using the wet oxidation method. The process of degradation of azo dyes by Ferrate was studied with several parameters such as pH, different Ferrate(VI) dosage, different azo dye initial concentration, and temperature. A second-order reaction was observed in all degradation processes for RB5 having the highest degradation efficiency. The highest kapp value of RB5 degradation was 190.49 M-1s-1. In the pH experiments, the neutral condition has been identified as the optimum condition for the degradation of RB5 with 63.2% of dye removal. The efficiency of degradation also depends on the amount of ferrate(VI) available in the reactor. Degradation efficiency increased with an increase in Potassium Ferrate(VI) dosage or a decrease of RB5 initial concentration. The temperature has been reported as one of the most important parameters. From the results, increasing the temperature(up to 45℃) will increase the degradation efficiency of azo dye by Ferrate(VI) and if the temperature exceeds 45℃, the degradation efficiency will be decreased.

Microstructural Analysis and High Temperature Compression Behavior of High Temperature Degradation on Hastelloy X (Hastelloy X의 고온열화에 따른 미세구조 및 고온압축특성)

  • Kim, Gil-Su;Jo, Tae-Sun;Seo, Young-Ik;Ryu, Woo-Seog;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.318-322
    • /
    • 2006
  • Short-term high temperature degradation test was conducted on Hastelloy X, a candidate tube material for high temperature gas-cooled reactors (HTGR), to evaluate the variation of microstructure and mechanical property in air at $1050^{\circ}C$ during 2000 h. The dominant oxide layer was Cr-oxide and a very shallow Cr-depleted region was observed below the oxide layer. At the beginning of degradation, the island shape $M_6C$ precipitate (M=Mo-rich, Fe, Ni, Cr) was observed in matrix region. After 2000 h degradation, precipitate shape was changed to the chain shape and increased amount of precipitate. These results influenced mechanical property of the specimen which exposed in high temperature. Yield strength was decreased from 115MPa to 89 MPa after 24 h and 2000 h exposure, respectively.