DOI QR코드

DOI QR Code

페레이트를 활용한 아조 염료 Reactive Black 5 분해 연구

Degradation of Reactive Black 5 by potassium ferrate(VI)

  • ;
  • 김일규 (부경대학교 지구환경시스템과학부(환경공학 전공))
  • Minh Hoang Nguyen (Division of Earth Environmental System Science, Pukyong National University) ;
  • Il-kyu Kim (Division of Earth Environmental System Science, Pukyong National University)
  • 투고 : 2023.11.01
  • 심사 : 2024.01.05
  • 발행 : 2024.02.15

초록

본 논문은 회분식 반응기에서 습식 산화법으로 합성한 칼륨 페레이트(VI)에 의한 난분해성 아조 염료Reactive Black 5의 분해 과정을 연구하는 것을 목적으로 한다. 수용액에서 RB5의 분해는 pH, Ferrate (VI) 투입량, 초기 농도, 수용액 온도 등 다양한 변수의 조건에서 연구되었다. RB5 경우에는 최대 분해 효율은 pH 7.0에서 63.2%가 달성되었으며, 이 실험 조건에서 얻은 kapp 값은 190.49 M-1s-1으로 나타났다. 온도 또한 가장 중요한 매개 변수 중 하나로 연구되었으며, 그 결과로부터 온도(45℃까지)를 증가시키면 페레이트(VI)에 의한 아조 화합물 염료의 분해 효율이 증가하고, 온도가 45℃를 초과하면 분해 효율이 저하되는 것으로 나타났다.

This paper aims to study the degradation process for refractory azo dye namely Reactive Black 5(RB5) by potassium ferrate(VI) synthesized using the wet oxidation method. The process of degradation of azo dyes by Ferrate was studied with several parameters such as pH, different Ferrate(VI) dosage, different azo dye initial concentration, and temperature. A second-order reaction was observed in all degradation processes for RB5 having the highest degradation efficiency. The highest kapp value of RB5 degradation was 190.49 M-1s-1. In the pH experiments, the neutral condition has been identified as the optimum condition for the degradation of RB5 with 63.2% of dye removal. The efficiency of degradation also depends on the amount of ferrate(VI) available in the reactor. Degradation efficiency increased with an increase in Potassium Ferrate(VI) dosage or a decrease of RB5 initial concentration. The temperature has been reported as one of the most important parameters. From the results, increasing the temperature(up to 45℃) will increase the degradation efficiency of azo dye by Ferrate(VI) and if the temperature exceeds 45℃, the degradation efficiency will be decreased.

키워드

과제정보

This work was supported by a Research Grant from Pukyong National University (2023 year).

참고문헌

  1. Acosta-Rangel, A., Sanchez-Polo, M., Rozalen, M., Rivera-Utrilla, J., Polo, A.M.S., Berber-Mendoza, M.S. and Lopez-Ramon, M. V. (2020). Oxidation of Sulfonamides by Ferrate (VI): Reaction Kinetics, Transformation Byproducts, and Toxicity Assessment, J. Environ. Manag., 255.
  2. Benkhaya, S., M'rabet, S., and Harfi, A.E. (2020). Classifications, properties, recent synthesis and applications of azo dyes, Heliyon, 6(1), 32-71. https://doi.org/10.1016/j.heliyon.2020.e03271
  3. Brandara. J., Mielczarski, J.A., and Kiwi. J. (1999). 1. Molecular Mechanism of Surface Recognition. Azo Dyes Degradation on Fe, Ti, and Al Oxides through Metal Sulfonate Complexes. Langmuir., 15, 7670-7679. https://doi.org/10.1021/la9900270
  4. Chung, K.T., Jr, S.E.S. (1993). Decolorization of azo dyes by environmental microorganisms and helminths, Environ. Toxicol. Chem., 12, 2121-2132.
  5. Ezzatahmadi, N., Teng, B., Liu, H., Millar, G.J., Ayoko, G.A., Zhu, J., Zhu, R., Liang, X., He, H., and Xi, Y. (2017). Catalytic degradation of Orange II in aqueous solution using diatomite-supported bimetallic Fe/Ni nanoparticles. RSC Advance, 14.
  6. Fan, J., Ding, Z., Zhao, Z., Liu, J. (2018). Degradation of p-Arsanilic Acid and Simultaneous in-Situ Removal of Arsenic Species with Ferrate(VI): Kinetics, Intermediate and Degradation Pathway, Chem. Eng. J., 350, 453-462. https://doi.org/10.1016/j.cej.2018.04.144
  7. Guoting, L., Ninggai W., Bingtao, L., and Xiwang, Z., (2009). Decolorization of azo dye Orange II by ferrate(VI)-hypochlorite liquid mixture, potassium ferrate(VI) and potassium permanganate. Desalination, 249(3), 936-941. https://doi.org/10.1016/j.desal.2009.06.065
  8. Hoang, N.M., and Kim, I.K. (2022). Degradation of Eriochrome Black T by Potassium Ferrate (VI), J. Water Sewerage, 36(3), 167-175. https://doi.org/10.11001/jksww.2022.36.3.167
  9. Huang, Z.S. (2021). Ferrate Self-Decomposition in Water Is Also a Self-Activation Process: Role of Fe(V) Species and Enhancement with Fe(III) in Methyl Phenyl Sulfoxide Oxidation by Excess Ferrate, Water Res., 197.
  10. Ivanenko, O. (2020). Application of Potassium Ferrate in Water Treatment Processes, J. Ecol. Eng., 21, 134-140. https://doi.org/10.12911/22998993/125438
  11. Jiang, J.Q. (2007). Research progress in the use of Ferrate (VI) for environmental remediation, J. Hazard. Mater., 146(3), 617-623. https://doi.org/10.1016/j.jhazmat.2007.04.075
  12. Jiang, J.Q., Wang, S., and Panagoulopoulos, A. (2005). The exploration of Potassium Ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment, Chemosphere, 63(2), 212-219. https://doi.org/10.1016/j.chemosphere.2005.08.020
  13. Jiang, J.Q., and Lloyd, B. (2005). Progress in developing and using Ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment, Water Res., 36(6), 1397-1408. https://doi.org/10.1016/S0043-1354(01)00358-X
  14. Kovalakova P., Cizmas L., Feng M., McDonald T.J., Marsalek B., Sharma K.S. (2021). Oxidation of antibiotics by ferrate(VI) in water: Evaluation of their removal efficiency and toxicity changes, Chemosphere, 277, 130365.
  15. Li, X.Z., and Graham, N. (2005). A study of the preparation and reactivity of Potassium Ferrate, Chemosphere, 61(4), 537-543. https://doi.org/10.1016/j.chemosphere.2005.02.027
  16. Li Y., Jiang L., Wang R., Wu P., Liu J., Yang S., Liang J., Lu G., Zhu N. (2021). Kinetics and mechanisms of phenolic compounds by Ferrate(VI) assisted with density functional theory, J. Hazard. Mater., 415, 125563.
  17. LI Y., WU P., JIANG L., WU Y. (2020). Progress on Application of Ferrate(VI) for the Environmental Remediation. Materials Reports, 34(19): 19003-19009.
  18. Liang, X., and Fenglian, F. (2020). Se(IV) oxidation by ferrate(VI) and subsequent in-situ removal of selenium species with the reduction products of ferrate(VI): performance and mechanism, J. Environ. Sci. Health, 55, 528-536. https://doi.org/10.1080/10934529.2019.1710422
  19. Liu H., Pan X., Chen J., Qi Y., Qu R., Wang Z. (2019). Kinetics and mechanism of the oxidative degradation of parathion by Ferrate(VI), Chem. Eng. J., 365, 142-152. https://doi.org/10.1016/j.cej.2019.02.040
  20. Liu, Y., Li, C., Bao, J., Wang, X., Yu, W., and Shao, L. (2020). Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation, Water, 123.
  21. Machala, L., Zboril, R., Sharma, V.K., Filip, J., Jancil, D., and Homonnay, Z. (2009). Transformation of solid Potassium Ferrate (VI) (K2FeO4): Mechanism and kinetic effect of air humidity, Eur. J. Inorg. Chem., 8, 1060-1067. https://doi.org/10.1002/ejic.200801068
  22. Maryam, M., Masoud, P., Kavoos, D., and Hamzeh, A.J. (2016). Optimizing Potassium Ferrate for textile wastewater treatment by RSM, Environ. Health Eng. Manag., 33, 137-142.
  23. Moore, S.B., and Ausley, L.W. (2002). Systems thinking and green chemistry in the textile industry: concepts, technologies and benefits, J. Clean. Prod., 12, 585-601. https://doi.org/10.1016/S0959-6526(03)00058-1
  24. Ogugbue, C.J., and Sawidis, T. (2021). Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent, Biotechnol. Res. Int., vol. 2011, Article ID 967925, 11.
  25. Ong, S.A., Eiichi, T., Hirata, M., and Hano, T. (2012). Decolorization of Orange II using an anaerobic sequencing batch reactor with and without co-substrates, J. Environ. Sci., 24(2) 291-296. https://doi.org/10.1016/S1001-0742(11)60766-3
  26. Paixao, K., Abreu, E., Samanamud, G.R.L., Franca, A.B., Loures, C.C.A., Baston, E.P., Naves, L.L.R., Bosch, J.C., and Naves, F.L. (2019). Normal boundary intersection applied in the scale-up for the treatment process of Eriochrome Black T through the UV/TiO2/O3 system, J. Environ. Chem. Eng., 7, 102801.
  27. Robinson, T., McMullan, G., Marchant, R., and Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77(3), 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8
  28. Sharma, V.K. (2002). Potassium Ferrate (VI): an environmentally friendly oxidant, Adv. Environ. Res., 6(2), 143-156. https://doi.org/10.1016/S1093-0191(01)00119-8
  29. Sharma, V.K., Yngard, R.A., Cabelli, D.E., and Clayton Baum J (2008). Ferrate (VI) and Ferrate (V) oxidation of cyanide, thiocyanate, and copper(I) cyanide, Radiat. Phys. Chem., 77(6), 761-767. https://doi.org/10.1016/j.radphyschem.2007.11.004
  30. Sharma, V.K. (2013). Ferrate (VI) and Ferrate (V) Oxidation of Organic Compounds: Kinetics and Mechanism, Coord. Chem. Rev., 257, 495-510. https://doi.org/10.1016/j.ccr.2012.04.014
  31. Sheela, T., Paul, O., Senthil, K. (2020). Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition, Microbiol. Res., 250.
  32. Talaiekhozani, A., Bagheri, M., Talaie khozani, M.R., and Jaafarzadeh, N. (2016). An Overview on Production and Applications of Ferrate (VI), Jundishapur J. Health Sci., 5, 1828-1842.
  33. Thomas, M., Drzewicz, P., Wieckol-Ryk, A., and Panneerselvam, B. (2021). Influence of Elevated Temperature and Pressure on Treatment of Landfill Leachate by Potassium Ferrate (VI), Water Air Soil Pollut., 232, 450.
  34. Thompson, J.E., Ockerman, L.T., and Schreyer, J.M. (1951). Preparation and purification of Potassium Ferrate (VI), J. Am. Chem. Soc., 73, 1379-1381. https://doi.org/10.1021/ja01147a536
  35. Wagner, W.F., Gump, J.R., and Hart, E.N. (1952). Factors Affecting Stability of Aqueous Potassium Ferrate (VI) Solutions, Anal. Chem., 24, 1497-1498. https://doi.org/10.1021/ac60069a037
  36. Wang, J., Zheng, T., Cai, C., Zhang, Y., and Liu, H. (2019). Oxidation of Ethanethiol in Aqueous Alkaline Solution by Ferrate (VI): Kinetics, Stoichiometry and Mechanism, Chem. Eng. J., 361, 1557-1564. https://doi.org/10.1016/j.cej.2018.11.005
  37. Wei, Y.L., Wang, Y.S., and Liu, C.H. (2015). Preparation of Potassium Ferrate from Spent Steel Pickling Liquid, Metals., 5(4), 1770-1787. https://doi.org/10.3390/met5041770
  38. Xu. G.R., Zhang. Y.P., and Li, G.B. (2009). Degradation of azo dye active brilliant red X-3B by composite ferrate solution, J. Hazard. Mater., 161(2-3), 30, 1299-1305. https://doi.org/10.1016/j.jhazmat.2008.04.090
  39. Yang, B., Ying, G.G., Zhang, L.J., Zhou, L.J., Liu, S., and Fang, Y.X. (2011). Kinetics Modeling and Reaction Mechanism of Ferrate (VI) Oxidation of Benzotriazoles, Water Res., 45, 2261-2269. https://doi.org/10.1016/j.watres.2011.01.022
  40. Zhang, W. (2020). Effectiveness Analysis of Potassium Ferrate Pretreatment on the Disintegration of Waste Activated Sludge, Res. Environ. Sci., 33, 1045-1051.
  41. Zheng, L. (2020). Chemically Enhanced Primary Treatment of Municipal Wastewater with Ferrate (VI), Water Environ. Res., 93, 817-825. https://doi.org/10.1002/wer.1473
  42. Zollinger, H. (1987). Synthesis, properties of Organic Dyes and Pigments, Color Chemistry, New York, USA: VCH Publishers, 92-102.
  43. Goff, H., and Murmann, R.K. (1971). Studies on the mechanism of isotopic oxygen exchange and reduction of ferrate (VI) ion (FeO42-). J. Am. Chem. Soc., 93, 6058-6065. https://doi.org/10.1021/ja00752a016
  44. Hoppe, M.L., Schlemper, E.O., and Murmann, R.K. (1982). Structure of dipotassium ferrate(VI), Structural Science, Crystal Engineering and Materials, Acta Cryst., B38, 2237-2239.