• Title/Summary/Keyword: Degradation products

Search Result 781, Processing Time 0.03 seconds

Photodegradation of Phosphamidon and Profenofos (Phosphamidon과 Profenofos의 광분해성)

  • 민경진;차춘근
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.49-58
    • /
    • 2000
  • The present study was performed to investigate photodegradation rate constants and degradation products of phosphamidon and profenofos by the USEPA method. The two pesticides were very stable in 16 days exposure of sunlight from September 3 to 22, 1999 and humic acid had no sensitizing effect on the photolysis of each pesticide in sunlight. In the UV irradiation test, phosphamidon was rapidly degraded as increasing UV intensity. In case of UV irradiation with TiO2 and with TiO2 powder amount, degradation of profenofos showed no significant difference with UV irradiation. Photodegradation rate of profenofos was slower than that of phosphamidon. In order to identify photolysis products, the extracts of degradation products were analyzed by GC/MS. The mass spectra of photolysis products of phosphamidon were at m/z 153 and 149, those of the profenofos were at m/z 208 and 240, respectively. It was suggested that the photolysis products of phosphamidon were 0, 0-dimethyl phosphate(DMP) and N, N-diethylchloroacetamide, those of profenofos were 4-bromo-2-chlorophenol and 0-ethyl-S-propyl phosphate.

  • PDF

Structural characterization and degradation efficiency of degradation products of iopromide by electron beam irradiation (전자선 처리 후 생성된 Iopromide의 분해산물 구조 규명 및 분해 효율)

  • Ham, Hyun-Sun;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.292-299
    • /
    • 2014
  • Iopromide is an X-ray contrast agent that has been detected frequently with high concentration level in surface waters. Structural characterization of degradation products and measurement of degradation efficiency of iopromide by an electron beam irradiation were performed. For the fortified sample with iopromide, electron beam irradiation (UELV-10-10S, klysotrn, 10 MeV, 1 mA and 10 kW) was performed. The chemical structures of I_D_665 and I_D_663, which are degradation products of iopromide, were proposed by interpretation of mass spectra and chromatograms by LC/ESI-MS/MS. The mass fragmentation pathways of mass spectra in tandem mass spectrometry were also proposed. Iopromide was degraded 30.5~98.4% at dose of 0.3~5 kGy, and 97.8~30% in the concentration range $0.5{\sim}100{\mu}g/kg$ at electron beam dose of 0.3 kGy, respectively. Thus, increased degradation efficiency of iopromide by electron beam irradiation was observed with a higher dose of electron beam and lower concentration.

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

Streptozotocin의 췌장독성을 유발하는 활성 본체

  • 정진호;김부영;김미정;이주영
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.175-175
    • /
    • 1993
  • Streptozotocin, which is a naturally occurring nitrosoamide used extensively to produce diabetes mellitus in experimental animals, has been known to be chemically stable only under acidic condition (pH 4). The present study was conducted to determine whether its degradation products formed under various conditions can induce hyperglycemia in female rats. Streptozotocin in phosphate buffer saline (pH 7.4) resulted in spontaneous degradation rapidly. Furthermore, streptozotocin incubated with plasma isolated from rats was degraded even faster than those in neutral buffer. When streptozotocin was administered iv to rats, significant elevations in blood glucose level were observed within 24 hours. However, rats treated with equimolar concentration of streptozotocin degradation products under the phosphate buffer saline as well as the plasma did not lead to hyperglycemia. These results suggest that, when streptozotocin administered undergo spontaneous breakdown in vivo, its degradation Products do not induce the hyperglycemia in rats.

  • PDF

Structural evaluation of degradation products of Loteprednol using LC-MS/MS: Development of an HPLC method for analyzing process-related impurities of Loteprednol

  • Rajesh Varma Bhupatiraju;Bikshal Babu Kasimala;Lavanya Nagamalla;Fathima Sayed
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.98-113
    • /
    • 2024
  • The current investigation entails the characterization of five degradation products (DPs) formed under different stress conditions of loteprednol using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, this study developed a stable high-performance liquid chromatography (HPLC) method for evaluating loteprednol along with impurities. The method conditions were meticulously fine-tuned which involved the exploration of the appropriate solvent, pH, flow of the mobile phase, columns, and wavelength. The method conditions were carefully chosen to successfully resolve the impurities of loteprednol and were employed in subsequent validation procedures. The stability profile of loteprednol was exposed to stress degradation experiments conducted under five conditions, and DPs were structurally characterized by employing LC-MS/MS. The chromatographic resolution of loteprednol and its impurities along with DPs was effectively achieved using a Phenomenex Luna 250 mm C18 column using 0.1 % phosphoric acid, methanol, and acetonitrile in 45:25:30 (v/v) pumped isocratically at 0.8 mL/min with 243 nm wavelength. The method produces an accurate fit calibration curve in 50-300 ㎍/mL for loteprednol and LOQ (0.05 ㎍/mL) - 0.30 ㎍/mL for its impurities with acceptable precision, accuracy, and recovery. The stress-induced degradation study revealed the degradation of loteprednol under basic, acidic, and photolytic conditions, resulting in the formation of seven distinct DPs. The efficacy of this method was validated through LC-MS/MS, which allowed for the verification of the chemical structures of the newly generated DPs of loteprednol. This method was appropriate for assessing the impurities of loteprednol and can also be appropriate for structural and quantitative assessment of its degradation products.

Maltol, an Antioxidant Component of Korean Red Ginseng, Shows Little Prooxidant Activity

  • Suh, Dae-Yeon;Han, Yong-Nam;Han, Byung-Hoon
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.112-115
    • /
    • 1996
  • Some antioxidant phenolic compounds exhibit prooxidant activity mainly due to their abilities to reduce $Fe^{3+}\; to\; Fe^{2+}.$ Reducing ability and prooxidant activity of maltol, an antioxidant component of Korean red ginseng, were compared with those of pyrogallol. Maltol at 2 mM did not appreciably reduce$ Fe^{3+}\; to\; Fe^{2+}$ and also failed to reduce nitroblue tetrazolium. Stimulation of hydroxyl radical mediated-deoxyribose degradation by pyrogallol was maximal at 60 .mu.M. Maltol stimulated the deoxyribose degradation to a much less extent, and a similar stimulatory effect was observed at a concentration of more than 100-fold higher than that of pyrogallol. The stimulatory effect of maltol reached a plateau over 1 mM, suggesting the removal of hydroxyl radicals by excess maltol. In bleomycin-$Fe^{3+}$-DNA assay, maltol at 2 mM produced a 2.5-fold increase of the iron-bleomycin-dependent DNA degradation over the basal value, whereas pyrogallol at 10 .mu.M accelerated DNA degradation by ca. 10-fold. Furthermore, maltol inhibited $Fe^{2+}$-stimulated DNA degradation by bleomycin. These results strongly suggested that maltol is an antioxidant with little prooxidant activity.

  • PDF

Analysis of Photodegradation Products of Organic Photochromes by LC/MS

  • Lim, Young-Hee;Youn, Yeu Young;Kim, Kyung Hoon;Cho, Hye-Sung
    • Mass Spectrometry Letters
    • /
    • v.3 no.4
    • /
    • pp.101-103
    • /
    • 2012
  • The ultraviolet (UV) degradation products of photochromic naphthoxazine and naphthopyran derivatives in acetonitrile were separated and identified using liquid chromatography-mass spectrometry (LC-MS). Photodegradation resulted in oxidation of products.

Electrochemical Degradation of Benzoquinone in a Flow through Cell with Carbon Fibers

  • Yoon, Jang-Hee;Yang, Jee-Eun;Shim, Yoon-Bo;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.403-407
    • /
    • 2007
  • The anodic degradation of benzoquinone(BQ), a model compound for wastewater treatment was carried out using a home-made flow-through electrochemical cell with carbon fibers. To optimize the controlled current electrolysis condition of an aqueous BQ solution, the experimental variables affecting the degradation of BQ, such as the applying current, pH, reaction time, and flow rate of the BQ solution were examined. The degradation products of the oxidation reaction were identified by High Performance Liquid Chromatography and Inductively Coupled Plasma Atomic Emission Spectrometer. Low molecular weight aliphatic acids, and CO2 were the major products in this experiment. The removal efficiency of BQ from the solution increased with the applying current and time. 99.23% of 1.0 × 10-2 M BQ was degraded to aliphatic acids and CO2 when the applying current is 175 mA in a 12 hr electrolysis.

Analysis of Field Reliability Data with Supplementary Information on Degradation Data and Covariates (열화자료와 설명변수 정보를 고려한 사용현장 신뢰성 자료의 분석)

  • 서순근;하천수
    • Journal of Applied Reliability
    • /
    • v.2 no.2
    • /
    • pp.63-83
    • /
    • 2002
  • Degradation data can provide more reliability information than traditional failure-time data, especially products with few or no failures. This paper is concerned with a method of estimating lifetime distribution from field data with supplementary information on degradation data and covariates. When a distribution of degradation rate obtained by follow-up study for a portion of products that survive after-warranty follows a reciprocal-Weibull or lognormal distribution. A time-to-failure distribution of the product follows Weibull or lognormal distribution, respectively. A method of estimating lifetime parameters for this kind of data and their asymptotic properties are studied. Effects of after-warranty report probability, follow-up rate, and proportion of degradation data on pseudo maximum likelihood estimators of these parameters are investigated.

  • PDF

Effects of Aspergillus oryzae Fermentation Extract on In Situ Degradation of Feedstuffs

  • Chiou, P.W.S.;Chen, C.;Yu, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1076-1083
    • /
    • 2000
  • The aim of this study was to evaluate the effect of Aspergillus oryzae fermentation extract (AFE) on in situ degradation of the various concentrates, forages and by-products in Taiwan. The in situ trial was conducted to determine the effect of AFE on the rate of ruminal degradation of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) of the various local available feedstuff commonly used for dairy cattle. Two ruminal fistulated cows were arranged into a two by two switchback trial. Two dietary treatments were control without AFE inclusion diet and diet with 3 g of AFE (Amaferm) added daily into the total mixed ration (TMR). Results showed that effect of AFE inclusion on the ruminal degradability of concentrates vary; soybean meal is the most responsive feedstuff, corn is the next, whereas full-fat soybean did not response the AFE inclusion at all. The inclusion of AFE significantly depressed most of the nutrient degradation of the concentrates of soybean meal in the first 12-hour in situ incubation. The effect declined in the next 12 hours. Rapeseed meal showed a different trend of response: addition of AFE improved its NDF degradation. The inclusions of AFE significantly improved ADF degradation of roughage after 24 or 48 hours of incubation. However, corn silage and peanut-vines showed a different trend. Effects of AFE inclusion on the by-products degradability were inconsistent. Most of nutrients in rice distillers grain and some in beancurd pomace did show increased degradation by the AFE inclusion.