• Title/Summary/Keyword: Degradation model

Search Result 1,581, Processing Time 0.027 seconds

The Analysis of life distribution for Light Source using degradation Tests of Luminous Flux (광속의 열화시험을 이용한 광원의 수명분포 분석)

  • Lee, S.H.;Shin, S.W.;Cho, M.R.;Hwang, M.K.;Yang, S.Y.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.161-165
    • /
    • 2005
  • In this paper, we observed degradation characteristics of luminous flux for new light source. Because degradation tests can be a useful tool for assessing the reliability when few or even no failures are expected in a life tests. And we use a simple random coefficient degradation model to induce most suitable equation of degradation. As a result, exponential distribution and equation is best suitable model for new light source.

  • PDF

A Preventive Maintenance Model Based on the level of item degradation (마모 수준에 의거한 예방 정비 모형)

  • 구자항;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.173-179
    • /
    • 1992
  • This paper is concerned with preventive maintenance model for the items whose failures are dependent on their wear level. The previous maintenance models have used time as their decision variable, but it is not appropriate for the case which have wear dependent processes for their failures. In this paper, we consider an operating item which is under periodic review and which is subject to degradation. The scheduled maintenance (overhaul ) is based on the level of item degradation rather time. A functional equation for the total expected cost over an infinite horizon period is formulated and solved.

  • PDF

Flexural fatigue modeling of short fibers/epoxy composites

  • Shokrieh, M.M.;Haghighatkhah, A.R.;Esmkhani, M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.287-292
    • /
    • 2017
  • In the present research, an available flexural stiffness degradation model was modified and a new comprehensive model called "X-NFSD" was developed. The X-NFSD model is capable of predicting the flexural stiffness degradation of composite specimen at different states of stresses and at room temperature. The model was verified by means of different experimental data for chopped strand mat/epoxy composites under displacement controlled bending loading condition at different displacements and states of stresses. The obtained results provided by the present model are impressively in very good agreement with the experimental data and the mean value of error of 5.4% was achieved.

Radiation-induced thermal conductivity degradation modeling of zirconium

  • Sangil Choi;Hyunmyung Kim;Seunghwan Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1277-1283
    • /
    • 2024
  • This study presents a radiation-induced thermal conductivity degradation (TCD) model of zirconium as compared to the conventional UO2 TCD model. We derived the governing factors of the radiation-induced TCD model, such as maximum TCD value and temperature range of TCD. The maximum TCD value was derived by two methods, in which 1) experimental result of 32 % TCD was directly utilized as the maximum TCD value and 2) a theoretical approach based on dislocation was applied to derive the maximum TCD value. Further, the temperature range of TCD was determined to be 437-837 K by 1) experimental results of post-annealing of irradiation hardening as compared to 2) the rate theory and thermal equilibrium. Consequently, the radiation-induced TCD model of zirconium was derived to be $f_r=1-{\frac{0.32}{1+{\exp}\,\{(T-637)/45\}}}$. Because the thermal conductivity of zirconium is one of the factors determining the storage and transport system, this newly proposed model could improve the safety analysis of spent fuel storage systems.

The Performance Degradation of Static Type Input Buffers due to Device Degradation (소자열화로 인한 Static 형 입력버퍼의 성능저하)

  • 김한기;윤병오
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.561-564
    • /
    • 1998
  • This paper describes a performance degradation of static type input buffer due to the device degradation in menory devices using $0.8\mu\textrm{m}$ CMOS process. experimental results shows that the degradation of MOS device affects the Trip Point shift in static type input buffer. We have performed the spice simulation and calculated the Trip Point with model parameter and measurement data so that how much the Trip Point(VLT) variate.

  • PDF

Environmental Quality in Indonesia: Disruption by Economic Agents

  • AZWARDI, Azwardi;SUKANTO, Sukanto;ADNAN, Nazeli;KURNIAWAN, Arika
    • Asian Journal of Business Environment
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • Purpose: This study aims to determine the effect of economic agents, such as the amount of government expenditure on the environment, households, manufacturing industry, and shipping activities; on environmental degradation in Indonesia. Research design, data, and methodology: This study is conducted with 264 observations from panel data of 33 provinces during 2010-2017. Environmental degradation is measured by using the environmental quality index collected from Indonesian Ministry of Forestry and Indonesian Central Bureau of Statistics. Three testing models are used to test the panel data, namely Common Effect Model (CEM), Fixed Effect Model (FEM), and Random Effect Model (REM). Results: The research findings show that the amount of government expenditure on the environment, households, and shipping activities have a negative and significant effects on environmental degradation, while the number of manufacturing industry has positive and significant effect on environmental degradation. Unlike the previous studies, the result also shows that government expenditure on environmental has a positive and significant effect on environmental quality index. Conclusion: It can be concluded that even though Indonesian government spent a low budget on environment, their environmental regulation has succeeded both in reducing environmental degradation and increasing the environmental quality as indicated by Indonesian environmental quality index.

Development of Evaluation Model of Pumping and Drainage Station Using Performance Degradation Factors (농업기반시설물 양·배수장의 성능저하 요인분석 및 성능평가 모델 개발)

  • Lee, Jonghyuk;Lee, Sangik;Jeong, Youngjoon;Lee, Jemyung;Yoon, Seongsoo;Park, Jinseon;Lee, Byeongjoon;Lee, Joongu;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.75-86
    • /
    • 2019
  • Recently, natural disasters due to abnormal climates are frequently outbreaking, and there is rapid increase of damage to aged agricultural infrastructure. As agricultural infrastructure facilities are in contact with water throughout the year and the number of them is significant, it is important to build a maintenance management system. Especially, the current maintenance management system of pumping and drainage stations among the agricultural facilities has the limit of lack of objectivity and management personnel. The purpose of this study is to develop a performance evaluation model using the factors related to performance degradation of pumping and drainage facilities and to predict the performance of the facilities in response to climate change. In this study, we focused on the pumping and drainage stations belonging to each climatic zone separated by the Korea geographical climatic classification system. The performance evaluation model was developed using three different statistical models of POLS, RE, and LASSO. As the result of analysis of statistical models, LASSO was selected for the performance evaluation model as it solved the multicollinearity problem between variables, and showed the smallest MSE. To predict the performance degradation due to climate change, the climate change response variables were classified into three categories: climate exposure, sensitivity, and adaptive capacity. The performance degradation prediction was performed at each facility using the developed performance evaluation model and the climate change response variables.

Investigation on Oil-paper Degradation Subjected to Partial Discharge Using Chaos Theory

  • Gao, Jun;Wang, Youyuan;Liao, Ruijin;Wang, Ke;Yuan, Lei;Zhang, Yiyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1686-1693
    • /
    • 2014
  • In this paper, oil-paper samples composed of transformer windings were used to investigate the insulation degradation process subjected to partial discharge (PD), with artificial defects inside to simulate the PD induced insulation degradation. To determine appropriate test voltages, the breakdown time obtained through a group of accelerated electrical degradation tests under high voltages was firstly fitted by two-parameter Weibull model to acquire the average breakdown time, which was then applied to establish the inverse power law life model to choose advisable test voltages. During the electrical degradation process, PD signals were synchronously detected by an ultra-high frequency (UHF) sensor from inception to breakdown. For PD analysis, the whole degradation process was divided into ten stages, and chaos theory was introduced to analyze the variation of three chaotic parameters with the development of electrical degradation, namely the largest Lyapunov exponent, correlation dimension and Komogorov entropy of PD amplitude time series. It is shown that deterministic chaos of PD is confirmed during the oil-paper degradation process, and the obtained results provide a new effective tool for the diagnosis of degradation of oil-paper insulation subjected to PD.

The Prediction of Fatigue Life According to the Determination of the Parameter in Residual Strength Degradation Model (잔류강도 저하모델의 파라미터결정법에 따른 피로수명예측)

  • 김도식;김정규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2053-2061
    • /
    • 1994
  • The static and fatigue tensile tests have been conduted to predict the fatigue life of 8-harness satin woven and plain woven carbon/epoxy composite plates containing a circular hole. A fatigue residual strength degradation model, based on the assumption that the residual strength for unnotched specimen decreases monotonically, has been applied to predict statistically the fatigue life of materials used in this study. To determine the parameters(c, b and K) of the residual strength degradation model, the minimization technique and the maximum likelihood method are used. Agreement of the converted ultimate strength by using the minimization technique with the static ultimate strength is reasonably good. Therefore, the minimization technique is more adjustable in the determination of the parameter and the prediction of the fatigue life than the maximum likelihood method.

Compressive strength degrdation model of Ultra high strength under high temperature (고온가열을 받는 초고강도 콘크리트의 압축강도저하 모델 제안)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Young-Wook;Lee, Bo-Kyeong;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.26-27
    • /
    • 2014
  • Study on high temperature properties of concrete and internal force estimation of structural member subjected to high temperature mainly applied high temperature strength model based on experimental results with concrete under 40MPa. However, it is reported that degradation of internal force at high temperature and spalling of ultra high strength concrete are higher than that of normal strength concrete. Therefore, this study attempts to propose compressive strength degradation model which is suitable to ultra high strength concrete comparing to existing model by evaluating high temperature properties of ultra high strength concrete.

  • PDF