• Title/Summary/Keyword: Degradation model

Search Result 1,596, Processing Time 0.027 seconds

Investigation of Photocatalytic Process on Removal of Natural Organic Matter in Nanofiltration Process (광촉매 공정에 의한 유기물 제거가 나노여과 공정에 미치는 영향)

  • Lee, Kew-Ho;Choi, In-Hwan;Kim, In-Chul;Min, Byoung-Ryul
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.244-253
    • /
    • 2007
  • This research investigated the effect of a photocatalytic reaction on nanofiltration(NF) membrane fouling by natural organic matter(NOM). The photocatalytic degradation was very effective for destruction and transformation of NOM and was carried out by titanium dioxide($TiO_2$) and $TiO_2$-immobilized bead as a photocatalyst. In order to compare their phtocatalytic properties, the photocatalytic degradation of humic acid in the presence of calcium ion was used as a model reaction. After the photocatalytic degradation the membrane fouling was dramatically decreased.

Cometabolism of Trichloroethylene by a Phenol-Degrading Bacterium, Pseudomonae sp. EL-04J (페놀분해세균인 Pseudomonas sp. EL-04J에 의한 Trichloroethylene의 공동대사)

  • Kim, Ho-Seong;Park, Geun-Tae;Son, Hong-Ju;Park, Seong-Hun;Lee, Sang-Jun
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.359-364
    • /
    • 2001
  • Pseudomanas sp. EL-04J was previously isolated from phenol-acclimated activated sludge. This bacterium was capable of degrading phenol and cometabolizing trichloroethylene (TCE). After precultivation in the mineral salts medium containing phenol as a sole carbon source, Pseudomonas EL-04J degraded 90% of TCE $25 \mu\textrm{M}$ within 20 hours. Thus, phenol-induced Pseudomonas sp. EL-04J cells can bdegrade TCE. Followsing a transient lag period, Pseudomonas sp. EL-04J cells degraded TCE at concentrations of at least $250 \mu\textrm{M}$ with no apparent retardation in rate, but the transformance capacity of such cells was limited and depended on the cell concentration. The degradation rate of TCE followed the Michaelis-Menten kinetic model. The maximum degradation ratio ($V_{max}$) and saturation constant ($K_{m}$) were $7nmo {\ell}/min{\cdot}mg$ cell protein and $11 \mu\textrm{M}$, respectively. Cometabolism of TCE by phenol fed experiment was evaluated in $50m {\ell}$ serum vial that contained $10m {\ell}$ of meneral sals medium supplemented with $10 \mu\textrm{M}$ TCE degradation was inhibited in the initial period of 1 mM phenol addition, but after that time Pseudomonas sp. EL-04J cells degraded TCE and showed cell growth.

  • PDF

Degradation Prediction of Piezo-Composite Actuator under Cyclic Electric Field (반복하중을 받는 압전 복합재료 작동기의 피로 특성)

  • Setiawan Hery;Goo Nam Seo;Yoon Kwang Joon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.286-289
    • /
    • 2004
  • This paper presents the fatigue characteristics of LIPCA (LIghtweight Piezo-Composite Actuator) device system. The LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced lightweight composite layers. Typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. The advantages of the LIPCA design are weight reduction by using the lightweight fiber reinforced plastic layers without compromising the generation of high force and large displacement and design flexibility by selecting the fiber direction and the size of prepreg layers. To predict the degradation of actuation performance of LIPCA due to fatigue, the cyclic electric loading tests using PZT specimens were performed and the strain for a given excitation voltage was measured during the test. The results from the PZT fatigue test were implemented into CLPT (Classical Laminated Plate Theory) model to predict the degradation of LIPCA's actuation displacement. The fatigue characteristic of PZT was measured using a test system composed of a supporting jig, a high voltage power supplier, data acquisition board, PC, and evaluated.

  • PDF

Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability

  • Vorechovska, Dita;Somodikova, Martina;Podrouzek, Jan;Lehky, David;Teply, Bretislav
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • Service life assessments which do not include the synergy between mechanical and environmental loading are neglecting a factor that can have a significant impact on structural safety and durability assessment. The degradation of concrete structure is a result of the combined effect of environmental and mechanical factors. In order to make service life design realistic it is necessary to consider both of these factors acting simultaneously. This paper deals with the advanced modelling of concrete carbonation and chloride ingress into concrete using stochastic 1D and 2D models. Widely accepted models incorporated into the new fib Model Code 2010 are extended to include factors that reflect the coupled effects of mechanical and environmental loads on the durability and reliability of reinforced concrete structures. An example of cooling tower degradation by carbonation and an example of a bended reinforced concrete beam kept for several years in salt fog are numerically studied to show the capability of the stochastic approach. The modelled degradation measures are compared with experimental results, leading to good agreement.

DEGRADATION CHARACTERISTICS OF SOME TROPICAL FEEDS IN THE RUMEN

  • Navaratne, H.V.R.G.;Ibrahim, M.N.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1988
  • The rumen degradability of rice straw (untreated, urea-sprayed, urea-treated), grasses (Panicum maximum, Pennisetum clandestinum) and rice bran was compared. The mean in vivo organic matter digestibility of the untreated (US), urea-supplemented (SS) and urea-ammonia treated (TS) rice straw were 50.9, 53.9 and 57.4%, respectively. Rice bran contained extremely high levels of acid-insoluble ash (25.2% DM), and its OMD was 36.1%. Grasses had OMD values around 66%. Degradability measurements were performed with buffaloes using the nylon bag technique. The organic matter (OM) disappearance data were fitted to an model which was used to describe degradation pattern. The mean potentially degradable fraction for US, SS and TS was 61.5, 61.9 and 69.4%, respectively. Urea-ammonia treatment increased both the amount of OM degraded and the rate at which it was degraded in the rumen. Both grasses had similar values for degradable fraction (around 65%) and for rate constant for degradation (0.04). Rice bran contained high proportions of readily soluble material (23.9%), but the degradable OM fraction was only 13.2%. The low quality of rice bran is attributed to the contamination of rice hulls during processing.

Photocatalytic Degradation of Quinol and Blue FFS Acid Using TiO2 and Doped TiO2

  • Padmini., E.;Prakash, Singh K.;Miranda, Lima Rose
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.332-335
    • /
    • 2010
  • The photodegradation of the model compounds Quinol, an aromatic organic compound and Acid blue FFS, an acid dye of chemical class Triphenylmethane was studied by using illumination with UV lamp of light intensity 250W. $TiO_2$ and $TiO_2$ doped with Boron and Nitrogen was used as catalyst. The sol-gel method was followed with titanium isopropoxide as precursor and doping was done using Boron and Nitrogen. In photocatalytic degradation, $TiO_2$ and doped $TiO_2$ dosage, UV illumination time and initial concentration of the compounds were changed and examined in order to determine the optimal experimental conditions. Operational time was optimized for 360 min. The optimum dosage of $TiO_2$ and BN doped $TiO_2$ was obtained to be 2 $mgL^{-1}$ and 2.5 $mgL^{-1}$ respectively. Maximum degradation % for quinol and Blue FFS acid dye was 78 and 95 respectively, at the optimum dosage of BN-doped $TiO_2$ catalyst. It was 10 and 4% higher than when undoped $TiO_2$ catalyst was used.

Degradation in Intimate Bearing Capacity of Open -ended Pile During Simulated Horizontal Earthquake Shaking (유사화된 지진 진동에 의한 개단 말뚝의 지지력 저감)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.75-86
    • /
    • 1995
  • After open -ended model pipe pile, which was composed of inner tube and outer tube was driven by different installation methods, degradation in open -ended pipe pile capacity was studied during simulated horizontal seismic shaking, which was modeled by records of actual earthquake. Drgradation in ultimate capacity of open -ended pipe pile during simulated earthquake was about 20% in impact pile and was approached up to about 40% in vibratal pile. Most of degradation in ultimate pile capacity was occured in the outer shaft surface and degradations in outer skin friction, toe resistance of steel, and plugging force were about 80%, 10%, 10%, respectively. out of ultimate pile capacity. It appeared that this trend did not depend upon the different installation methods of pile.

  • PDF

Performance of BMSC column with large eccentricity under natural exposure conditions

  • Ma, Haiyan;Zeng, Xiangchao;Yu, Hongfa;Yue, Peng;Zhu, Haiwei;Wu, Chengyou
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.541-550
    • /
    • 2020
  • As a new type of concrete material, basic magnesium sulfate cement concrete (BMSC) has the advantages, such as early strength, high strength, good toughness and crack resistance. However, it is unclear about the degradation of the mechanical properties of BMSC columns, which is exposed to the natural environment for several years. In order to apply this new concrete to practical engineering, six large-eccentricity compressive columns of BMSC were studied. The mechanical properties such as the crack propagation, failure morphology, lateral displacement and bearing capacity of BMSC column were studied. The results show that the degradation rate of ultimate load of BMSC column is from 6% to 7%. The degradation rate of the stiffness of the column is from 6% to 13%. With the increase of compressive strength of BMSC, the axial displacement and lateral displacement are gradually reduced. The calculation model of bearing capacity of the BMSC column under the large eccentric compression is proposed. This paper provides a reference for the application of BMSC columns in the civil engineering.

Non-destructive Evaluation Method for Service Lifetime of Chloroprene Rubber Compound Using Hardness

  • Park, Kwang-Hwa;Lee, Chan-Gu;Park, Joon-Hyung;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.124-135
    • /
    • 2021
  • Evaluating service lives of rubber materials at certain temperatures requires a destructive method (typically using elongation at break). In this study, a non-destructive method based on hardness change rate was proposed for evaluating the service life of chloroprene rubber (CR). Compared to the destructive method, this non-destructive method ensures homogeneity of CR specimens and requires a small number of samples. Thermal accelerated degradation test was conducted on the CR specimens at 55, 70, 85, 100, and 125℃, and the tensile strength, elongation at break, and hardness were measured. The results of the experiment were compared to those of the accelerated life evaluation method proposed in this study. Comparing the analyzed lives in the high temperature region (70, 85, 100, and 125℃), the difference between the service lives for the destructive method (using the elongation at break) and non-destructive method (using the hardness) was approximately 0.1 year. Therefore, it was confirmed that the proposed non-destructive evaluation method based on hardness changes can evaluate the actual life of CR under thermally accelerated degradation conditions.

Recommendation of Navigation Performance for K-UAM Considering Multipath Error in Urban Environment Operation

  • Sangdo Park;Dongwon Jung;Hyang Sig Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.379-389
    • /
    • 2023
  • According to the Korea Urban Air Mobility (K-UAM) Concept of Operation (ConOps), the Global Navigation Satellite System (GNSS) is recommended as the primary navigation system and the performance specification will be implemented considering the standard of Performance Based Navigation (PBN). However, by taking into account the characteristics of an urban environment and the concurrent operations of multiple UAM aircraft, the current PBN standards for civil aviation seem difficult to be directly applied to an UAM aircraft. Therefore, by referring to technical documents published in the literature, this paper examines the feasibility of applying the proposed performance requirements to K-UAM, which follows the recommendation of navigation performance requirements for K-UAM. In accordance with the UAM ConOps, the UAM aircraft is anticipated to maintain low altitude during approach and landing phases. Subsequently, the navigation performance degradation could occur in the urban environment, and the primary degradation factor is identified as multipath error. For this reason, to ensure the safety and reliability of the K-UAM aircraft, it is necessary to analyze the degree of performance degradation related to the urban environment and then propose an alternative aid to enhance the navigation performance. To this end, the aim of this paper is to model the multipath effects of the GNSS in an urban environment and to carry out the simulation studies using the real GNSS datasets. Finally, the initial navigation performance requirement is proposed based on the results of the numerical simulation for the K-UAM.