• Title/Summary/Keyword: Degradation Occurrence

Search Result 124, Processing Time 0.035 seconds

Occurrence of Pseudomonas glumae and its control (세균성 벼알마름병의 발병요인과 방제대책)

  • 차광홍
    • Plant Disease and Agriculture
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 1995
  • This study was carried out to investigate effect of transplanting method, environmental factor, and fertilizing level on occurrence of Pseudomonas glumae in south-west coastal area of Chonnam province. Occurrence in filed began after heading and increased gradually during 3-4 weeks. Occurrence of this disease was great at daily minimum temperature of 23-$25^{\circ}C$ and series of rainfall during early and mid. August Degree of infection by fertilization of nitrogen and by transplanting fertilizing level of 50% than standard fertilization of nitrogen and by transplanting method was greater machine-transplanting than hand-transplanting. Rate of degradation was 6.5% in case of 10% of infected panicle, 14.5% in 30%, 22% in 50% and 35.9% in 70%. We can reduce occurrence of this disease by sawing non -infected seed and balanced fertilizing in cultural practice and applying oryza 4kg/a in early transplanting or Kasugamin EC and Allta in heading stage.

  • PDF

Epoxidized Polybutadiene as a Thermal Stabilizer for Poly(3-hydroxybutyrate). II. Thermal Stabilization of Poly(3-hydroxybutyrate) by Epoxidized Polybutadiene

  • Choi, Ju-Yol;Lee, Jong-Keun;You, Young;Park, Won-Ho
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.195-198
    • /
    • 2003
  • Epoxidized polybutadiene (EPB) was prepared by polybutadiene (PB) with m-chloroperbenzoic acid (MCPBA) in homogeneous solution. EPB was blended with poly(3-hydroxybutyrate) (PHB) up to 30 wt% by solution-precipitation procedure. The thermal decomposition of PHB/EPB blends was studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). The thermograms of PHB/EPB blends contained a two-step degradation process, while that of pure PHB sample exhibited only one-step degradation process. This degradation behavior of PHB/EPB blends, which have a higher thermal stability as measured by maximum decomposition temperature and residual weight, is probably due to crosslinking reactions of the epoxide groups in the EPB component with the carboxyl chain ends of PHB fragments during the degradation process, and the occurrence of such reactions can be assigned to the exothermic peaks in their DTA thermograms.

A Study on Degradation Properties of Silicone Cable due to Partial Discharge (부분 방전에 의한 실리콘 케이블의 열화 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • In this study, the characteristics of partial discharge was measured for the four core silicone cable (0.6/1.0 kV, $1.0SQ{\times}4C$) with insulated part of 15 cm and conductor of 1cm. The following results have been confirmed as a result of this study. When the first line of cable is connected to the positive electrode and the second, third line of cable is connected to the negative electrode, it found that the inception voltage and extinction voltage decreased with increasing the line of negative electrode, and the partial discharge charge quantity(Q) increases, while the number of discharge occurrence has decreased. The inception voltage and extinction voltage of partial discharge has decreased with increasing the degradation rate in the 33%, 67%, 100%. Also, it confirmed that the partial discharge charge quantity(Q) and the number of discharge occurrence has decreased.

Electrochemical Advanced Oxidation of Lamotrigine at Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel Anodes

  • Meena, Vinod Kumar;Ghatak, Himadri Roy
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.292-307
    • /
    • 2022
  • The study presents kinetics of degradation and mineralization of an anti-epileptic drug Lamotrigine (LAM) in the aqueous matrix by electrochemical advanced oxidation process (EAOP) on Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel (SS) anodes using sodium sulphate as supporting electrolyte. On both the anodes, kinetic behaviour was pseudo-first-order for degradation as well as mineralization of LAM. On Ti/DSA anode, maximum LAM degradation of 75.42% was observed at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm Na2SO4 concentration. Maximum mineralization attained was 44.83% at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 50 ppm concentration of Na2SO4 with energy consumption of 2942.71 kWh/kgTOC. Under identical conditions on SS anode, a maximum of 98.92% LAM degradation was marked after a specific charge (Q) of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm concentration of Na2SO4. Maximum LAM mineralization on SS anode was 98.53%, marked at a specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 75 ppm concentration of Na2SO4, with energy consumption of 1312.17 kWh/kgTOC. Higher Mineralization Current Efficiency (MCE) values were attained for EAOP on SS anode for both degradation and mineralization due to occurrence of combined electro-oxidation and electro-coagulation process in comparison to EAOP on Ti/DSA anode due to occurrence of lone electro-oxidation process.

IDENTIFICATION AND ASSESSMENT OF AGING-RELATED DEGRADATION OCCURRENCES IN NUCLEAR POWER PLANTS

  • Choi, In-Kil;Choun, Young-Sun;Kim, Min-Kyu;Nie, Jinsuo;Braverman, Joseph I.;Hofmayer, Charles H.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.297-310
    • /
    • 2012
  • Aging-related degradation of nuclear power plant components is an important aspect to consider in securing the long term safety of the plant, especially the seismic safety, since the degradation of the components affects not only their seismic capacity but their response. This can cause a change in the seismic margin of a component and the overall seismic safety of a system. To better understand the status and characteristics of degradation of components in Nuclear Power Plants (NPPs), the degradation occurrences of components in the U.S. NPPs were identified by reviewing recent publicly available information sources and the characteristics of these occurrences were evaluated and compared to observations from the past. Ten categories of components that are of high risk significance in Korean NPPs were identified, comprising anchorage, concrete, containment, exchanger, filter, piping systems, reactor pressure vessels, structural steel, tanks, and vessels. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

Study on the Prediction of Surface Color Change of Cultural Properties Materials by Fog Occurrence (안개 발생에 따른 문화재 표면의 색 변화 예측 연구)

  • Han, Ye Bin;Park, Sang Hyeon;Yu, Ji A;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.491-500
    • /
    • 2016
  • Fog is atmospheric in which tiny drops of water vapor are suspended in the air near the ground. Its form, occurrence, etc., change according to the temperature, relative humidity, wind and geographical features of the space around it. In particular, fog tends to occur near a source of water because of temperature and relative humidity difference. These days, climate change is increasingly affecting the occurrence of fog. Therefore the purpose of this study was to investigate how fog affects materials that are part of our cultural properties through outdoor exposure tests and artificial degradation. The degradation evaluation of materials as a function of fog occurrence frequency, showed that the color of metals changed noticeably, whereas dyed silk and Dancheong showed degradation on the surface and color differences but no particular tendencies. Therefore, damage prediction by color differences as a function of fog occurrence frequency was based on metal samples, which showed constant color differences. Through a comparison of the predictive value and color difference by outdoor exposure, the accuracy and applicability of the damage prediction formula was confirmed. If a more complex damage prediction formula is created, it is expected that prediction of the degree of material damage in the field would be possible.

Potential degradation of methylene blue (MB) by nano-metallic particles: A kinetic study and possible mechanism of MB degradation

  • Singh, Jiwan;Chang, Yoon-Young;Koduru, Janardhan Reddy;Yang, Jae-Kyu
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The degradation of methylene blue (MB) in an aqueous solution by nano-metallic particles (NMPs) was studied to evaluate the possibility of applying NMPs to remove MB from the wastewater. Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the synthesized NMPs before and after the reaction. The effects of the NMP dosage, the initial pH, the initial concentration of MB and the amount of $H_2O_2$ on the MB degradation outcomes were studied. The highest removal rate of MB was achieved to be 100% with an initial MB concentration of 5 mg/L, followed by 99.6% with an initial concentration of 10 mg/L under the following treatment conditions: dose of NMP of 0.15 g/L, concentration of $H_2O_2-100mM$ and a temperature of $25^{\circ}C$. The SEM analysis revealed that the nano particles were not spherical in shape. FTIR spectra shows occurrence of metal oxides on the surfaces of the NMPs. The XPS analyses results represent that Fe, Zn, N, Ca, C and O were occurred on the surfaces of the NMPs. The degradation of MB was suitable for the pseudo-first-order kinetics.

Influence of Hydrolytic Degradation on the Morphology of Cured Urea-Formaldehyde Resins of Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Jeong, Ho-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.179-186
    • /
    • 2011
  • In an effort to understand the hydrolytic degradation process of cured urea-formaldehyde (UF) resins responsible for the formaldehyde emission of wood-based composite panels, this study analyzed the influence of acid hydrolysis on the morphology of cured UF resins with different formaldehyde/urea (F/U) mole ratios such as 1.6, 1.4, 1.2 and 1.0. Field emission-scanning electron microscopy (FE-SEM) was employed to observe both exterior and fracture surfaces on thin films of cured UF resins before and after the etching with hydrochloric acid as a simulation of the hydrolytic degradation process. FE-SEM images showed that the exterior surface of cured UF resin with the F/U mole ratio of 1.0 had spherical structures after the acid hydrolysis while the other cured UF resins were not the case. However, the fracture surface observation showed that all the samples possessed spherical structures in the cured state of UF resins although their occurrence and size decreased as the F/U mole ratio increased. For the first time, we found the spherical structures in cured UF resins of higher F/U mole ratio of 1.4. After the acid hydrolysis, the spherical structures became a much predominant at the fracture surface. These results indicated that the spherical structures in cured UF resinswere much more resistant to the hydrolytic degradation by the acid than amorphous region.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

Fracture Behavior and Degradation of Piezoelectric Properties in PZT (PZT의 파괴거동 및 압전 열화특성)

  • 태원필;김송희;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.806-814
    • /
    • 1992
  • The aim of this study was to investigate the change in compressive strength, freacture behavior and degradation of piezoelectric properties with compressive cyclic loading in Pb(Zr, Ti)O3 of tetragonal, morphotropic phase boundary and rhombohedral composition. The highest compressive strength was found in rhombohedral composition. After poling treatment the strength increased by 8.4% and 6.5% in tetragonal and morphotropic phase boundary compositions respectively while changed little in rhombohedral. The increase of compressive strength after poling treatment is believed to be due to the internal stress around grain boundary by domain alginment toward electric field direction in the microstructures having tetragonality and the occurrence of domain switching to the direction perpendicular to electrical field during fracture. Fracture mode relatively change from transgranular to intergranular was observed in the large grain sized tetragonal and morphotropic phase boundary compositions before and after poling but the transgranular fracture mode always remained in the rhombohedral composition. From the X-ray diffractometer analysis the domains parallel to the electric field direction is known to undergo rearrangement during the cyclic loading into random direction that is responsible for the degradation of piezoelectric property.

  • PDF