• Title/Summary/Keyword: Deformation model

Search Result 3,689, Processing Time 0.029 seconds

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

Seismic Response of Stone Column-Improved Soft Clay Deposit by Using 1g Shaking Table (1g 진동대를 이용한 쇄석말뚝으로 개량된 연약점토 지반의 지진 응답 특성)

  • Kim, Jin-Man;Lee, Hyun-Jin;Ryu, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.61-70
    • /
    • 2010
  • A series of shaking table tests were conducted to estimate the seismic performance of soft ground deposits improved by stone column. The amplification of acceleration, shear strain, and shear wave velocity were evaluated to compare the seismic response of unimproved ground deposits with that of improved ground deposits. From the test results, it was shown that the stone column can prevent large shear deformation in ground deposits. However, it was also found that the acceleration of improved ground deposits may be amplified more than that of unimproved ground deposits when it was subjected to short periodic seismic wave. The results suggest that it is necessary to perform the ground response analysis with model experiments for both unimproved and improved ground deposits to evaluate the effect of stone column on the seismic performance of improved ground deposits.

Evaluation of Influencing Factors on Settlement Behavior of Very Soft Ground with Reinforced Surface (표층처리공법으로 개량된 초연약지반의 침하거동에 미치는 영향인자 분석)

  • You, Seung-Kyong;Lee, Jong-Sun;Ham, Tae-Gew;Yang, Kee-Suk;Cho, Sam-Deok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.85-92
    • /
    • 2008
  • It is necessary to develop a rational design method for surface reinforcement of very soft ground because most current design works rely on merely crude empirical correlations. In this paper, the mechanical behavior of very soft ground that is surficially reinforced was investigated with the aid of a series of numerical analyses. Several material properties of each dredged soft ground, reinforcement and backfill sand mat have been exercised in the numerical analysis. The result of numerical analysis was compared with those of the laboratory model test. Through the matching process between the numerical and experimental result, it is possible to determine representative material properties of the dredged soft ground, reinforcements and backfill sand mat. These verified material properties permit to evaluate the effect of the stiffness of reinforcement and the thickness of sand mat on the overall deformation of the reinforced soft ground.

Evaluation of Residual Strength of CFRP Pressure Vessel After Low Velocity Impact (저속 충격 하중을 받은 탄소섬유강화 복합재 압력용기의 잔류강도 저하 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Kim, Hyung-Geun;Hwang, Tae-Kyung
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • In this paper, the low velocity impact characteristics of filament winding CFRP pressure vessel was investigated using numerical and experimental methods. The cylinder part of CFRP vessel was impacted using triangular shape impactor which simulated the sharp edge of dropping tools and impact response behavior of CFRP was reviewed. The mechanical behavior, such as deformation and stress distribution, were also predicted by explicit finite element method and the validity of the model was investigated. For the quantitative evaluation of the residual strength of the pressure vessel after impact, a series of the ring specimens was cut from the impacted vessel and its burst pressure was measured by hydraulic pressure hoop tension test. As the results, the relationship between the residual strength degradation and the impact energy was successively obtained and a useful methodology to evaluate quantitatively the impact damage tolerance of CFRP pressure vessel was established.

Multi-Region based Radial GCN algorithm for Human action Recognition (행동인식을 위한 다중 영역 기반 방사형 GCN 알고리즘)

  • Jang, Han Byul;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.46-57
    • /
    • 2022
  • In this paper, multi-region based Radial Graph Convolutional Network (MRGCN) algorithm which can perform end-to-end action recognition using the optical flow and gradient of input image is described. Because this method does not use information of skeleton that is difficult to acquire and complicated to estimate, it can be used in general CCTV environment in which only video camera is used. The novelty of MRGCN is that it expresses the optical flow and gradient of the input image as directional histograms and then converts it into six feature vectors to reduce the amount of computational load and uses a newly developed radial type network model to hierarchically propagate the deformation and shape change of the human body in spatio-temporal space. Another important feature is that the data input areas are arranged being overlapped each other, so that information is not spatially disconnected among input nodes. As a result of performing MRGCN's action recognition performance evaluation experiment for 30 actions, it was possible to obtain Top-1 accuracy of 84.78%, which is superior to the existing GCN-based action recognition method using skeleton data as an input.

Experimental and numerical analysis of seismic behaviour for recycled aggregate concrete filled circular steel tube frames

  • Xianggang Zhang;Gaoqiang Zhou;Xuyan Liu;Yuhui Fan;Ercong Meng;Junna Yang;Yajun Huang
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.537-543
    • /
    • 2023
  • To study the seismic behavior of recycled aggregate concrete filled circular steel tube (RACFCST) frames, the seismic behavior experiment of RACFCST frame was carried out to measure the hysteresis curve, skeleton curve and other seismic behavior indexes. Moreover, based on the experimental study, a feasible numerical analysis model was established to analyze the finite element parameters of 8 RACFCST frame specimens, and the influence of different variation parameters on the seismic behavior index for RACFCST frame was revealed. The results showed that the skeleton curve of specimens under different axial compression ratios were divided into three stages: elastic stage, elastic-plastic stage and descending stage, and the descending stage was relatively stable, indicating that the specimen had stronger deformation capacity in the descending stage. With the increase of axial compression ratio, the peak bearing capacity of all specimens reduced gradually, and the reduction was less than 5%. With the decrease of beam-column linear stiffness ratio, the peak bearing capacity decreased gradually. With the decrease of yield bending moment ratio of beam-column, the peak bearing capacity decreased gradually, and the decreasing rate of peak bearing capacity gradually accelerated. In addition, compared with the axial compression ratio, the beam-column linear stiffness ratio and the yield bending moment ratio of beam-column had a more significant influence on the peak bearing capacity of RACFCST frame.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Force-deformation relationship prediction of bridge piers through stacked LSTM network using fast and slow cyclic tests

  • Omid Yazdanpanah;Minwoo Chang;Minseok Park;Yunbyeong Chae
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.469-484
    • /
    • 2023
  • A deep recursive bidirectional Cuda Deep Neural Network Long Short Term Memory (Bi-CuDNNLSTM) layer is recruited in this paper to predict the entire force time histories, and the corresponding hysteresis and backbone curves of reinforced concrete (RC) bridge piers using experimental fast and slow cyclic tests. The proposed stacked Bi-CuDNNLSTM layers involve multiple uncertain input variables, including horizontal actuator displacements, vertical actuators axial loads, the effective height of the bridge pier, the moment of inertia, and mass. The functional application programming interface in the Keras Python library is utilized to develop a deep learning model considering all the above various input attributes. To have a robust and reliable prediction, the dataset for both the fast and slow cyclic tests is split into three mutually exclusive subsets of training, validation, and testing (unseen). The whole datasets include 17 RC bridge piers tested experimentally ten for fast and seven for slow cyclic tests. The results bring to light that the mean absolute error, as a loss function, is monotonically decreased to zero for both the training and validation datasets after 5000 epochs, and a high level of correlation is observed between the predicted and the experimentally measured values of the force time histories for all the datasets, more than 90%. It can be concluded that the maximum mean of the normalized error, obtained through Box-Whisker plot and Gaussian distribution of normalized error, associated with unseen data is about 10% and 3% for the fast and slow cyclic tests, respectively. In recapitulation, it brings to an end that the stacked Bi-CuDNNLSTM layer implemented in this study has a myriad of benefits in reducing the time and experimental costs for conducting new fast and slow cyclic tests in the future and results in a fast and accurate insight into hysteretic behavior of bridge piers.

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters : PART I - Effect of Plane Arrangement of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 : PART I - 잠제의 평면배치에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.345-354
    • /
    • 2008
  • In this present study, we made a first attempt to investigate physical transformations of incident waves in surf and swash zone and hydrodynamic phenomena of detached and submerged breakwaters. For an accurate simulation of the complicated wave deformation, Three-Dimensional numerical model with Large Eddy Simulation has been developed recently and expanded properly for the current applications, which is able to simulate an accurate and direct WAve Structure Sandy seabed interaction (hereafter, LES-WASS-3D). LES-WASS-3D has been validated through the comparison with experimental results for limited cases, and has been used for the simulation of wave run-up on sandy beach, mean fluid flows over and around submerged structures and swash zone (alongshore/rip current), and spatial distribution of wave height in wide fluid regions. In addition, a strategy of efficient deployment ($Y/L_i=1.50{\sim}1.75$, $W/L_r=0.50$) of the submerged breakwaters has been discussed.

Development of Analysis Program for PSC Beams with Unbonded External Tendons (외부 비부착 강선을 갖는 PSC보의 해석프로그램 개발)

  • Kwak, Hyo-Gyoung;Son, Je-Kuk;Kim, Sun-Yong;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.247-260
    • /
    • 2006
  • In this paper, an analytical method which can describe the structural behavior of prestressed concrete (PSC) bridges reinforced with the unbonded external tendon is developed. Since the unbonded external tendon is directly installed to the deviators while maintaining a straight configuration, it has a different deformation field from that of concrete and accompanies the secondary effect caused by the change of the primary eccentricity between concrete and external tendon. In advance, the friction slip at the deviators is also taken into consideration on the basis of the force equilibrium between the friction force and the driving force. Through correlation studies between experimental data and analytical results, it is verified that the proposed numerical model can effectively predict the structural behavior of PSC beam bridges with comparative precision.