• Title/Summary/Keyword: Deformation measurement

Search Result 733, Processing Time 0.029 seconds

Static Stiffness Tuning Method of Rotational Joint of Machining Center (머시닝센터 회전 결합부의 정강성 Tuning 기법)

  • Kim, Yang-Jin;Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A method has been developed to tune the static stiffness at a rotation joint considering the whole machine tool system by interactive use of finite element method and experiment. This paper describes the procedure of this method and shows the results. The method uses the static experiment on measurement model which is set-up so that the effects of uncertain factors can be excluded. For FEM simulation, the rotation joint model is simplified using only spindle, bearing and spring. At the rotation joint, the damping coefficient is ignored, The spindle and bearing is connected by only spring. By static experiment, 500 N is forced to the front and behind portion of spindle and the deformation is measured by capacitive sensor. The deformation by FEM simulation is extracted with changing the static stiffness from the initial static stiffness considering only rotation joint. The tuning static stiffness is obtained by exploring the static stiffness directly trusting the deformation from the static experiment. Finally, the general tuning method of the static stiffness of machine tool joint is proposed using the force stream and the modal analysis of machine tool.

Quantitative Interpretation of Holographic Fringe by Using Phase Shifting Method and Digital Image Processing (위상변이법과 디지탈 영상처리를 이용한 홀로그래피 간섭무늬의 정량적 해석)

  • 고영욱;권영하;강대임;박승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1728-1735
    • /
    • 1992
  • Holographic interferometry technique has been used for the measurement of whole-field deformation with high sensitivity. However there are some difficulties in quantitatively analyzing the holographic fringes. Recently, quantitative and automatic fringe analysis by using phase shifting method in interferometry has been studied in many fields. In this paper, a real time holographic interferometry system and a phase shifting method combined with digital image processing technique are employed to record and quantitatively analyze holographic fringe patterns. To evaluate our system and analyze errors, comparison of measured deformation with theoretical deformation of cantilever beam was carried out. The accuracy of 4.5% in our system was verified We have tried to apply this method to quantitatively measure the deformation of turbine blade under the bending force.

Investigation of thermal deformation of wing skin induced by temperature gradient (온도 구배에 의한 날개 외피의 열변형 특성 연구)

  • Kim, Jeong-Beom;Kim, Hong-Il;Kim, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.896-901
    • /
    • 2015
  • The skin-frame type structure is designed to investigate the thermal deformation of the wing skin induced by the temperature gradient. In order to effectively simulate the temperature gradient on the wing specimen, a water cooling system is devised on the frame of the specimen. Out of surface skin deformation of the skin-frame type structure made of SUS304 material with respect to the temperature is successfully measured using the digital image correlation (DIC) technique including quantitative evaluation of the measurement uncertainty.

Numerical approach on relationship between deformation of artificial crack and stress acting on tunnel shotcrete lining (인공균열 주위의 변형과 터널 숏크리트 라이닝 응력간의 상관관계에 대한 수치해석적 검토)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Bae, Gyu-Jin;Kim, Kyung-Shin;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.64-71
    • /
    • 2009
  • The stresses acting on shotcrete lining of tunnel have been measured virtually by monitoring instruments installed during construction. However, the malfunction of instrument and the lack of consistency of signal have always been controversial, but re-installation of instrument after construction of tunnel lining is practically impossible. Therefore, authors have carried out the study to develop a new technique for estimating the stress acting on shotcrete lining during and after construction. In the technique, stresses of shotcrete lining can be estimate by the measurement of deformation of free face. Therefore, the relationships between the stresses of shotcrete lining and deformation of free surface are indispensable factor. In this paper, the parametric study using 2D FEM analysis was carried out to estimate the relationships between the stress level acting on the tunnel shotcrete lining and the deformation near the free face (e.g. artificial crack in this study). The distribution of stresses of shotcrete lining is also investigated in this study as the preliminary investigation for the large-scale tunnel lining test and detailed 3D FEM analysis.

  • PDF

Characterization and correction of bemding deformation in pizeoelectric ceramics displacement (길이변조용 압전소자의 휨 측정과 보정)

  • 김재완;남승희;한재원
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • We suggest a method to measure and correct bending deformation in piezoelectric ceramics displacement. The angle and direction of the bending deformation are measured by monitoring the position of a laser beam reflected on a mirror which is attached to the piezoelectric ceramics with the uncertainty of the angle measurement of $0.36\mu$rad. We divided the electrode of a piezoelectric ceramic into 3 parts and connected 3 capacitors to each electrode in order to apply different voltage to each electrode with one voltage supplier. The deformation was corrected by adjusting the capacitance of each capacitor and was reduced to 6.3%, comparing to the uncorrected case. By using this corrected piezoelectric ceramic to modulate the length of the ringdown cavity, the fluctuation of the decay time caused by the change in optic axis of the cavity was removed.emoved.

  • PDF

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

Measurement of Material Deformation Using Laser Speckle (레이저 스페클을 이용한 재료 변형 측정)

  • 전문창;강기주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.688-694
    • /
    • 2002
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG(Speckle Strain/Displacement Gage), ESP(Electronic Speckle Photography) and its 3-dimension version SDSP are investigated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

  • PDF

Development of Tools for Measurement of Inner Shell Deformation of HANARO Reactor

  • Choung, Yun-Hang;Cho, Yeong-Garp;Lee, Jung-Hee;Wu, Jong-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1353-1354
    • /
    • 2004
  • It was estimated by an analysis method thai the inner shell of HANARO reactor will be deformed due to pressure, loads, creep and growth during reactor operation. To confirm the analysis validity and safe operation of reactor, we developed tools to remotely measure the straightness of the inner shell located 12m below the pool top. The performance and the accuracy of the measurement tools have been verified through tests using a dummy inner shell and steel straight edge. The accuracy of the measurement shows very good results with a maximum error of 0.06mm by steel straight edge. The technical experiences described in this paper will be a good reference not only for the operation and maintenance of HANARO but also for the next performance of the measurement in the future.

  • PDF

A Study on the Development of Image Processing Measurement System on the Structural Analysis by Optical Non-contact Measurement (광학적 비접촉 측정에 의한 구조물 해석의 화상처리 계측 시스템 개발에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.78-83
    • /
    • 1999
  • This study discusses a non-contact optical technique, electronic speckle pattern interformetry(ESPI), that is well suited for in-plane and out-of-plane deformation measurement. However, the existing ESPI methods that are based on dual-exposure, real-time and time-average method have difficulties for accurate measurement of structure, due to irregular intensity and shake of phase. Therefore, phase shifting method has been proposed in order to solve this problem. About the method, the path of reference light in interferometry is shifted and added to least square fitting method to make the improvement in distinction and precision. This proposed method is applied to measure in -plane displacement that is compared with the previous method. Also, Used as specimen AS4/PE따 [30/=30/90]s was analyzed by ESPI based on real-time to determine the characteristics of vibration under no-load and tension. These results are quantitatively compared with those of FEM analysis inmode shapes.

  • PDF

Development of Effective Measurement System for Micro Burrs (효율적인 마이크로 버 측정 시스템 개발)

  • Ko Sung-Lim;To Hoang-Minh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.702-705
    • /
    • 2005
  • Burr is an undesirable projection as result of plastic deformation. Burr minimization and effective deburring process are required strongly to reduce the cost of the parts. In doing these efforts, the precise burr measurement must be provided for the efficient process. For this purpose the conoscopic holography sensors are selected before. However, it has been very difficult to measure micro burrs less than $10{\mu}m$ due to their tiny and sharp geometries as well as the effect of ambient vibration during scanning. A new micro burr measurement system using high precision. Conoprobe sensor and XY table can measure the micro burrs which is less than $10{\mu}m$. Experiments were carried out showing that micro burr around $10{\mu}m$ was successfully measured and analyzed.

  • PDF