• 제목/요약/키워드: Deformable Model

검색결과 227건 처리시간 0.027초

Interactive Colision Detection for Deformable Models using Streaming AABBs

  • Zhang, Xinyu;Kim, Young-J.
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 3부
    • /
    • pp.306-317
    • /
    • 2007
  • We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At run-time, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30~100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  • PDF

3D/1D 하이브리드 유한요소 모델을 이용한 동력 분산형 차세대 고속열차 전체차량의 충돌 해석 (Collision Analysis of the Next Generation High-speed EMU Using 3D/1D Hybrid FE Model)

  • 김거영;구정서
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.67-76
    • /
    • 2012
  • In this paper, collision analysis of the full rake for the Next Generation High-speed EMU is conducted using a 3D/1D hybrid model, which combines 3-dimensional (3D) front-end structure of finite element model and 1-dimensional (1D) multi-body dynamics model in order to analyze train collision with a standard 3D deformable obstacle. The crush forces, passengers' accelerations and energy absorptions of a full rake train can be easily obtained through a simulation of a 1D dynamics model composed of nonlinear springs, dampers and masses. Also the obtained simulation results are very similar to those of a 3D model if an overriding behavior does not occur during collision. The standard obstacle in TSI regulation has been changed from a rigid body to a deformable body, and therefore 3D collision simulations should be conducted because their simulation results depends on the front-end structure of a train. According to the obstacle collision analysis of this study, the obstacle collides with the driver's upper structure after overriding over the front-end module. The 3D/1D hybrid model is effective to evaluate a main energy-absorbing module that is frequently changed during design process and reduce the need time of the modeling and analysis when compared to a 3D full car body.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders

  • Bian, Z.G.;Wang, Y.H.
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.355-371
    • /
    • 2013
  • Single- and multi-span orthotropic functionally graded hollow cylinders subjected to axisymmetrical bending are investigated on the basis of a unified shear deformable shell theory, in which the transverse displacement is expressed by means of a general shape function. To approach the through-thickness inhomogeneity of the hollow cylinder, a laminated model is employed. The shape function therefore shall be determined for each fictitious layer. To improve the computational efficiency, we resort to a transfer matrix method. Based on the principle of minimum potential energy, equilibrium equations are established, which are then solved analytically using the transfer matrix method for arbitrary boundary conditions. Numerical comparisons among a third-order shear deformable shell theory, an exact elastic theory and the present theory are provided for a simply supported hollow cylinder, from which the present theory turns out to be superior in stress estimation. Distributions of displacements and stresses in single- and three-span hollow cylinders with different boundary conditions are also illustrated in numerical examples.

Nonlinear dynamic FE analysis of structures consisting of rigid and deformable parts -Part I - Formulation

  • Rojek, J.;Kleiber, M.
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.313-326
    • /
    • 1994
  • Some structures under the action of some specific loads can be treated as consisting of rigid and deformable parts. The paper presents a way to include rigid elements into a finite element model accounting for geometrical and material nonlinearities. Lagrange multipliers technique is used to derive equations of motion for the coupled deformable-rigid system. Solution algorithm based on the elimination of the Lagrangian multipliers and dependent kinematic unknowns at the element level is described. A follow-up paper(Rojek and Kleiber 1993) complements the discussion by giving details of the computer implementation and presenting some realistic test examples.

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

풍화잔적토와 체적이 변하는 흙의 흙-수분 특성곡선 (Soil-Water Characteristic Curves of Residual Soils and Deformable Soils)

  • 이인모;이형주;김기섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.265-272
    • /
    • 2000
  • This study introduces the current theory of the SWCC and tries to verify the theory by performing laboratory tests for the local soils of Korea. First, the SWCCs of Poi-dong soil and Shinnae-dong soil, the most typical weathered residual soils in Korea, were experimentally obtained and the results were compared among others. Second, a SWCC model for deformable soils was proposed. For deformable soils, which show huge volume change during desaturation, the volume change behavior should be considered, and the SWCC should be expressed as a function of void ratio as well as suction.

  • PDF

부채꼴 요소법을 이용한 3 차원 도자기 모델링 (Pottery Modeling Using Circular Sector Element Method)

  • 이재봉;한갑종;최승문
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.78-84
    • /
    • 2008
  • 이 논문에서는 부채꼴 모양을 가진 요소의 집합으로 3 차원 도자기 모델을 구성하고 사용자가 촉감을 느끼면서 가상공간의 도자기를 제작할 수 있도록 하는 새로운 모델을 제안한다. 변형체를 다루기 위해 기존에 사용하던 유한 요소법(finite element method)과 같은 방법은 모델이 복잡하고 연산량이 많아 실시간 햅틱 렌더링(haptic rendering)에 사용하기에는 많은 제약이 있다. 제안한 모델에서는 도자기 모양의 특징에 착안하여 부채꼴 모양을 가진 요소들이 원통 형태로 모여 쌓여있는 구조를 이용하였다. 이를 통해 요소의 개수를 줄이고 복잡한 연산을 최대한 단순화면서 효율적인 모델링이 가능하도록 하였다.

  • PDF

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • 제35권2호
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

Deformable Convolution 기반 어텐션 모듈을 사용한 의미론적 분할 모델 설계 (Design of a Semantic Segmentation Model Usingan Attention Module Based on Deformable Convolution)

  • 김진성;정세훈;심춘보
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.11-13
    • /
    • 2023
  • 의미론적 분할(Semantic Segmentation)은 이미지 내의 객체 및 배경을 픽셀 단위로 분류하는 작업으로 정밀한 탐지가 요구되는 분야에서 활발히 연구되고 있다. 기존 어텐션 기법은 의미론적 분할의 다운샘플링(Downsampling) 과정에서 발생하는 정보손실을 완화하기 위해 널리 사용됐지만 고정된 Convolution 필터의 형태 때문에 객체의 형태에 따라 유동적으로 대응하지 못했다. 본 논문에서는 이를 보완하고자 Deformable Convolution과 셀프어텐션(Self-attention) 구조기반 어텐션 모듈을 사용한 의미론적 분할 모델을 제안한다.