• Title/Summary/Keyword: Defocus

Search Result 72, Processing Time 0.022 seconds

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.

Defocus Study of a Novel Optical Antenna Illuminated by a Radial Radiation Fiber Laser

  • Jiang, Ping;Yang, Huajun;Xie, Kang;Yu, Mingyin;Mao, Shengqian
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.485-494
    • /
    • 2014
  • A novel antenna with ellipsoid-paraboloid surfaces configuration is designed for matching the incident radial radiation fiber laser distribution for maximum transmission efficiency. The on-axial and off-axial defocus effects on the optical antenna system, resulting in energy loss, are analyzed in detail. Knowledge of the effects of those defocuses on beam divergence, aberration and antenna transmission efficiency is of great importance to the long range communication systems.

Depth Map Generation Algorithm from Single Defocused Image (흐린 초점의 단일영상에서 깊이맵 생성 알고리즘)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.67-71
    • /
    • 2016
  • This paper addresses a problem of defocus map recovery from single image. We describe a simple effective approach to estimate the spatial value of defocus blur at the edge location of the image. At first, we perform a re-blurring process using Gaussian function with input image, and calculate a gradient magnitude ratio with blurring amount between input image and re-blurred image. Then we get a full defocus map by propagating the blur amount at the edge location. Experimental result reveals that our method outperforms a reliable estimation of depth map, and shows that our algorithm is robust to noise, inaccurate edge location and interferences of neighboring edges within input image.

Bokeh Effect Algorithm using Defocus Map in Single Image (단일 영상에서 디포커스 맵을 활용한 보케 효과 알고리즘)

  • Lee, Yong-Hwan;Kim, Heung Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.87-91
    • /
    • 2022
  • Bokeh effect is a stylistic technique that can produce blurring the background of photos. This paper implements to produce a bokeh effect with a single image by post processing. Generating depth map is a key process of bokeh effect, and depth map is an image that contains information relating to the distance of the surfaces of scene objects from a viewpoint. First, this work presents algorithms to determine the depth map from a single input image. Then, we obtain a sparse defocus map with gradient ratio from input image and blurred image. Defocus map is obtained by propagating threshold values from edges using matting Laplacian. Finally, we obtain the blurred image on foreground and background segmentation with bokeh effect achieved. With the experimental results, an efficient image processing method with bokeh effect applied using a single image is presented.

Analysis of Laser-protection Performance of Asymmetric-phase-mask Wavefront-coding Imaging Systems

  • Yangliang, Li;Qing, Ye;Lei, Wang;Hao, Zhang;Yunlong, Wu;Xian'an, Dou;Xiaoquan, Sun
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Wavefront-coding imaging can achieve high-quality imaging along with a wide range of defocus. In this paper, the anti-laser detection and damage performance of wavefront-coding imaging systems using different asymmetric phase masks are studied, through modeling and simulation. Based on FresnelKirchhoff diffraction theory, the laser-propagation model of the wavefront-coding imaging system is established. The model uses defocus distance rather than wave aberration to characterize the degree of defocus of an imaging system. Then, based on a given defocus range, an optimization method based on Fisher information is used to determine the optimal phase-mask parameters. Finally, the anti-laser detection and damage performance of asymmetric phase masks at different defocus distances and propagation distances are simulated and analyzed. When studying the influence of defocus distance, compared to conventional imaging, the maximum single-pixel receiving power and echo-detection receiving power of asymmetric phase masks are reduced by about one and two orders of magnitude respectively. When exploring the influence of propagation distance, the maximum single-pixel receiving power of asymmetric phase masks decreases by about one order of magnitude and remains stable, and the echodetection receiving power gradually decreases with increasing propagation distance, until it approaches zero.

Individual Difference in the Decrease of Visual Acuity and the Change in Contrast Threshold According to the Level of Optically Induced Retinal Defocus (광학적으로 유발된 망막흐림의 정도에 따른 시력감소의 개인차와 인식 대비도의 변화)

  • Kim, Sang-Yeob;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 2014
  • Purpose: We were aim to investigate individual difference of visual acuity (VA) decrease and the change of contrast threshold (CT) according to the level of optically induced retinal defocus. Methods: A total of 69 eyes were examined using consist of ten-graded decimal vision chart (Landolt's ring). After conducted full correction of subject's refractive error, a monocular VA and CT were measured according to sequential increase by 0.25 D each time. Results: VA gradually decreased according to the increase of retinal defocus level. Individual difference of VA decrease was range from 1.2 to 0.6 in retinal defocus induced by +0.25 D. When retinal defocus was induced as much as +0.50 D and +0.75 D, it was in the range of 1.0 to 0.3 and 0.9 to 0.1 respectively. With +1.00 D, some participants didn't even recognize the 0.1 in the chart. With +1.75 D, whole participant did not recognize the 0.1. Also, CT was gradually decreased with increase of the retinal defocus level. Conclusions: Examiners should consider individual difference in the decrease of VA according to the level of residual refractive error when determining final prescription of a patient.

Image Processing of Defocus Series TEM Images for Extracting Reliable Phase Information (정확한 위상정보를 얻기 위한 탈초점 영상들의 이미지 처리기법)

  • Song, Kyung;Shin, Ga-Young;Kim, Jong-Kyu;Oh, Sang-Ho
    • Applied Microscopy
    • /
    • v.41 no.3
    • /
    • pp.215-222
    • /
    • 2011
  • We discuss the experimental procedure for extracting reliable phase information from a defocus series of transmission electron microscopy (TEM) dark-field images using the transport of intensity equation (TIE). Taking InGaN/GaN multi-quantum well light-emitting diode as a model system, various factors affecting the final result of reconstructed phase such as TEM sample preparation, TEM imaging condition, image alignment, the correction of defocus values and the use of high frequency pass filter are evaluated. The obtained phase of wave function was converted to the geometric phase of the corresponding lattice planes, which was then used for the two-dimensional mapping of lattice strain following the dark-field inline holography (DIH) routine. The strain map obtained by DIH after optimized image processing is compared with that obtained by the geometric phase analysis of high resolution TEM (HRTEM) image, manifesting that DIH yields more accurate and reliable strain information than HRTEM-based GPA.

According to the Wavelength, the Analysis of Individual Eye Model's Aberration Change (파장에 따른 개별모형안의 수차변화 분석)

  • Kim, Se-Jin;Lim, Hyeon-Seon;Kim, Bong-Hwan;Kouh, Jeong-Hwi
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.61-64
    • /
    • 2008
  • Purpose: The analysis of individual eye model designed from clinical demonstration about emmetropia shows that the aberration would be changed by the wave change. Method: The model on the basis of clinical demonstration of eye ball is designed in a form of having 4 refraction surfaces and a constant refractive index. We analyzed designed twelve individual eye model into aberrations changes, as giving changes Fraunhofer lines's six wavelengths. Result: About individual eye model, change in the wavelength of the wavefront aberrations analysis using the Zernike coefficient. This data indicate that the shorter wave is, the more defocus increases and the deviation value of spherical aberration and RMS are widened. Conclusion: As quantity of defocus according to result wavelength change is shorter and shorter, inclination which is similar twelve individual eye model is bigger and bigger and individual eye model majority of cases, little change, and change is shown in part individual eye model is a significant performance degradation can be raised.

  • PDF

Photometric Defocus Observations of Transiting Extrasolar Planets

  • Hinse, Tobias C.;Han, Wonyong;Yoon, Joh-Na;Lee, Chung-Uk;Kim, Yong-Gi;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2015
  • We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6 m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique, allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of sub-millimagnitude order over several hours for a V~10 host star, typical for transiting planets detected from ground-based survey facilities. We compared our results with transit observations from a telescope operated in in-focus mode. High photometric precision was obtained due to the collection of a larger amount of photons, resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by exposing the same pixels on the CCD. Furthermore, a longer exposure time helps reduce the effect of scintillation noise which otherwise has a significant effect for small-aperture telescopes operated in in-focus mode. Finally we present the results of modelling four light-curves in which a root-mean-square scatter of 0.70 to 2.3 milli-magnitudes was achieved.

A New Method of Noncontact Measurement for 3D Microtopography in Semiconductor Wafer Implementing a New Optical Probe based on the Precision Defocus Measurement (비초점 정밀 계측 방식에 의한 새로운 광학 프로브를 이용한 반도체 웨이퍼의 삼차원 미소형상 측정 기술)

  • 박희재;안우정
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.129-137
    • /
    • 2000
  • In this paper, a new method of noncontact measurement has been developed for a 3 dimensional topography in semiconductor wafer, implementing a new optical probe based on the precision defocus measurement. The developed technique consists of the new optical probe, precision stages, and the measurement/control system. The basic principle of the technique is to use the reflected slit beam from the specimen surface, and to measure the deviation of the specimen surface. The defocusing distance can be measured by the reflected slit beam, where the defocused image is measured by the proposed optical probe, giving very high resolution. The distance measuring formula has been proposed for the developed probe, using the laws of geometric optics. The precision calibration technique has been applied, giving about 10 nanometer resolution and 72 nanometer of four sigma uncertainty. In order to quantitize the micro pattern in the specimen surface, some efficient analysis algorithms have been developed to analyse the 3D topography pattern and some parameters of the surface. The developed system has been successfully applied to measure the wafer surface, demonstrating the line scanning feature and excellent 3 dimensional measurement capability.

  • PDF