• Title/Summary/Keyword: Deflection test

Search Result 847, Processing Time 0.027 seconds

Mixed Mode Crack Propagation using the High Strength Concrete Disk (고강도 콘크리트 디스크를 이용한 혼합모드 균열전파)

  • 진치섭;김희성;박현재;김민철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.733-738
    • /
    • 2000
  • It is difficult to obtain accurate fracture toughness values by RILEM committees proposed three point bend test(TPB) because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, for disk test, fracture toughness is easily obtained from crack initial load. We examined the cracked high strength concrete disk and the experimental results were compared with the results by finite element analysis(FEA). Also we compared experimental fracture locus with theoretical fracture locus.

  • PDF

Experimental Investigation on Fatigue Behavior of Concrete Slab Tracks under Railway Loads (철도하중에 대한 콘크리트 슬래브궤도의 피로거동에 관한 실험적 연구)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.639-642
    • /
    • 2003
  • In this paper, fatigue behavior of concrete slab tracks under railway loads by experimental method is discussed. The addition of steel fibers to concrete mix has been receiving more attention as a way of improving the crack behavior of concrete beams an slabs tacks. This study two objectives: 1) to observe the fatigue behavior of fiber reinforced concrete slab in labor, and 2) to present crack propagation and deflection of fiber reinforced concrete slab track under railway loads in the Waghauser test line. Nine beams, two slabs and one test track were experimentally tested.

  • PDF

Buckling Analysis of Laminated Composite Plates (복합적층평판의 좌굴해석)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 1998
  • In this paper, the experimental and numerical results of buckling loads for laminated composite plates are compared. Using boundary conditions of buckling test are all fixed supports. Experiments were conducted for plates with fiber angles $ heta$=30$^{\circ}$, 45$^{\circ}$,60$^{\circ}$ and aspect ratio a/b=0.8. Experimental results were obtained from load-deflection curves of buckling test. Numerical methods were presented to evaluate buckling loads, using structural analysis results from ANSYS.

  • PDF

A Study on Vibration Analysis of Vehicle Rear-view Mirror (자동차(自動車) 룸 밀러 진동에 대한 연구(硏究))

  • Lim, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.1-7
    • /
    • 1995
  • Vehicle has two kinds of mirrors to check the rear. Especially inner rear-view mirror(room mirror) is easy to vibrate. A vibration of vehicle inner rear-view mirror affects safe driving. This study presents both of analysis of cause of mirror vibration and resolution in order to improve that throughout analysis by elasticity theory, FEM, and test.

  • PDF

Study on the Development of the Digital Image Correlation Measurements Program for Measuring the 3-Point Bending Test (이미지 상관법을 이용한 3 점 굽힘 시험 계측 프로그램 개발 관한 연구)

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Ko, Kwang Su;Kim, Sung Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.889-895
    • /
    • 2014
  • Machine parts and structures of a change in the displacement and strain can be evaluated safety is one of the important factors. Typically the strain gauge has been employed to measure the displacement and strain. However, this contact-type measurement method has disadvantages that are not measured under condition of specific object shape, surface roughness and temperature. In particularly, 3 point bending and 4 point bending test not use strain gauge. So its test used cross head displacement and deflect meter. Digital Image Correlation measurement methods have many advantages. It is non contact-type measurement method to measure the object displacements and strain. In addition, it is possible to measure the Map of full field displacements and strain. In this paper, measured the 3 point bending deflection using the Digital Image Correlation methods. In order to secure the reliability, Digital Image Correlation method and universal test machine were compared.

Numerical and experimental study of large deflection of symmetrically laminated composite plates in compression

  • Chai, Gin Boay;Hoon, Kay Hiang
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.359-367
    • /
    • 1994
  • The stability behaviour of symmetrically laminated rectangular composite plates with loaded ends clamped and unloaded edges simply-supported, and subjected to uniform in-plane compression is investigated. A numerical and experimental investigation is presented in this contribution. The stacking sequence of the laminated glass/epoxy composite plates is symmetric about the middle surface and consists of 8-ply [0, 90, +45, -45]s lamination. Numerical predictions were obtained through the use of the finite element method. The above plates were modelled with 8-noded isoparametric layered shell elements. The effect of the input parameters such as the degree and forms of prescribed initial imperfection and the incremental step size required for incremental loading, on the convergence of the solution is thoroughly examined. Experimental results are presented for 10 test panels. All test panels were made from glass/epoxy unidirectional prepregs and have aspect ratio of 5.088. The laminate thicknesses were found to vary from 1.054 mm to 1.066 mm. Comparison of experimental data with predicted results show good correlation and give confidence in the finite element model.

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 위성 전장품의 구조진동 해석)

  • 정일호;박태원;한상원;서종휘;김성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

Study for Safety on the Curve in the High-speed Railway Track (고속철도 궤도의 곡선부 주행안전성 평가)

  • Seo Sa-Bum;Lee Dong-Ho;Koo Bong-Kue
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.354-360
    • /
    • 2005
  • The railway track and the substructures constructed in the field test section of Kyongbu High Speed Line are the structures for HSL, for the first time designed and constructed by domestic technical group. It is very important to verify the local design criteria and specifications for these structures and also to assure the recordings for vibration or deflection produced on the essential parts of the structures. The study to verify the high-speed railway track performance and to ensure the run in safety on the track in curved section during the KTX run. Finally, the conclusion are drawn as follows. The measuring values of the deflection effort of the rail and displacement for verifying the track performance in the field test section of Kyoungbu HSL satisfy the criteria of the foreign countries (Japan and Germany). The measured value for the wheel load and the presumed value show the consistent tendency. The wheel loads of the exterior and interior of the rails at the speed superior to 300km/h are measured same. Finally, the comparison between the theoretical value presented during the verification of the derailment to evaluate the safety of the train run at the time of the detailed design of the track and the measured value in the field shows that the correct design of track structure was applied.

Shear Behavior of Polymer Cement High Strength Concrete Beams Mixed with Steel Fiber (강섬유 혼입 폴리머 시멘트 고강도 콘크리트 보의 전단거동)

  • 곽계환;박종건;곽경헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.93-102
    • /
    • 2002
  • Steel fiber and polymer are used widely for reinforcement material of RC structures because of its excellences of the durability, serviceability as well as mechanical properties. The purpose of this study is to investigate the shear behavior of polymer cement high strength concrete beams mixed with steel fiber. The compressive strength of concrete was based on the 100$\times$200 mm cylinder specimens. The compressive strength of concrete are 320$kgf/cm^2$, 436 $kgf/cm^2$ and 520 $kgf/cm^2$ in the 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. Also, load-strain and load-deflection examined. During the test cracks were sketched against the load values according to the growth of crack. result are as follows; (1) The failure modes of the specimens are increased in rigidity and durability with mixing steel fiber and polymer. (2) The load of initial crack was similar a theory of shear-crack strength. (3) The deflection and strain at failure load of Polymer-steel fiber high strength concrete beams were increased, improving the brittleness of the high strength concrete.