• Title/Summary/Keyword: Deflection test

Search Result 847, Processing Time 0.033 seconds

Anodic bonding Characteristics of MLCA to Si-wafer Using Evaporated Pyrex #7740 Glass Thin-Films for MEMS Applications (파이렉스 #7740 유리박막을 이용한 MEMS용 MLCA와 Si기판의 양극접합 특성)

  • Chung, Gwiy-Sang;Kim, Jae-Min;Yoon, Suk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.265-272
    • /
    • 2003
  • This paper describes anodic bonding characteristics of MLCA (Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100%, input power $1\;W/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA and Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-0.08 %FS. Moreover, any damages or separation of MLCA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MLCA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

Flexural Behavior of External Prestressed H-Beam (외부 긴장된 H형 보의 휨거동 특성)

  • Yang, Dong Suk;Lim, Sang Hun;Park, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • Recently, prestressed H-Beam bridges with external unbonded Tendons are increasingly built. The mechanical behavior of prestressed steel H-beams is different from that of normal bonded PSC beams in a point of the slip of tendons at deviators and the change of tendon eccentricity that occurs, when service load are applied in external unbonded steel H-beams. The concept of prestressing steel structures has been widely considered, in spite of long and successful history of prestressing concrete members. In the study, The flexural test on prestressed steel H-beams has been performed in the various aspects of prestressed H-beam including the tendon type and profile. The load was plotted against the deflection and the strain respectively in the steel beam and prestressing bars. The value expected with the equation of internal force equilibrium and compatibility between the deflection of the bars and the H-beam was found to correlate well with the measured data.

Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder (함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구)

  • Bu-Geun Paik;Jong-Woo Ahn;Young-Ha Park;So-Won Jeong;Jae-Yeol Song;Yoon-Ho Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

A Study on the Relation between Dynamic Deflection Modulus and In-Situ CBR Using a Portable FWD (소형FWD를 이용한 노상토의 동적변형계수와 현장 CBR의 상관 연구)

  • Kang, Hee Bog;Kim, Kyo Jun;Park, Sung Kyoon;Kim, Jong Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2008
  • The road construction, as part of effort to ease the worsening traffic, has been underway throughout the nation, while the existing road has been increasingly losing its load carrying capacity due to such factors as heavy traffic and weathering. In the case of site, the soil type, plasticity index, and specific gravity were SC, 12.2%, and 2.66, respectively. The maximum dry density, optimum moisture content and modified CBR were $1.895g/cm^3$ (Modified Compaction D), 13.6%, and 16.2%, respectively. A correlation of coefficient expressed good interrelationship by 0.90 between the CBR estimated from a dynamic penetration index of dynamic cone penetrometer test and a deformation modulus converted from a dynamic deflection modulus obtained from a portable FWD test.

Analysis on the Influence of Moment Distribution Shape on the Effective Moment of Inertia of Simply Supported Reinforced Concrete Beams (철근콘크리트 단순보의 유효 단면2차모멘트에 대한 모멘트 분포 형상의 영향 분석)

  • Park, Mi-Young;Kim, Sang-Sik;Lee, Seung-Bae;Kim, Chang-Hyuk;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • The concept of the effective moment of inertia has been generally used for the deflection estimation of reinforced concrete flexural members. The KCI design code adopted Branson's equation for simple calculation of deflection, in which a representative value of the effective moment of inertia is used for the whole length of a member. However, the code equation for the effective moment of inertia was formulated based on the results of beam tests subjected to uniformly distributed loads, which may not effectively account for those of members under different loading conditions. Therefore, this study aimed to verify the influences of moment shapes resulting from different loading patterns by experiments. Six beams were fabricated and tested in this study, where primary variables were concrete compressive strengths and loading distances from supports, and test results were compared to the code equation and other existing approaches. A method utilizing variational analysis for the deflection estimation has been also proposed, which accounts for the influences of moment shapes to the effective moment of inertia. The test results indicated that the effective moment of inertia was somewhat influenced by the moment shape, and that this influence of moment shape to the effective moment of inertia was not captured by the code equation. Compared to the code equation, the proposed method had smaller variation in the ratios of the test results to the estimated values of beam deflections. Therefore, the proposed method is considered to be a good approach to take into account the influence of moment shape for the estimation of beam deflection, however, the differences between test results and estimated deflections show that more researches are still required to improve its accuracy by modifying the shape function of deflection.

Estimation of Young's and Shear Moduli of a Core in ISB Panel with Woven Metal as Inner Structures (망형 직조 금속을 내부구조체로 가진 ISB 판재의 심재 종탄성 및 전단 계수 예측)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.116-123
    • /
    • 2009
  • The elastic properties of core affect mechanical properties and deformation behaviours of the lightweight sandwich panel. The objective of the present paper is to estimate experimentally Young's and shear moduli of a core in internally structured boned (ISB) panel with woven metal as inner structures using the deflection theory of sandwich beam considered core stiffness. Three points bending experiments were performed to obtain force-deflection curves of the designed ISB panel in each material direction. The elastic and shear moduli of the core in each material direction were estimated from slopes and intercepts of relationships between compliance per the span length and square of the span length, respectively. The results of the estimation showed that the fabric technology of the woven metal affects the variation of the elastic properties in the core. Through the comparison of shear moduli and force-deflection curves of the proposed method and those without considering the core stiffness, it was shown that the core stiffness should be considered to estimate properly the Young's and shear moduli of ISB panels. Finally, the contribution ratio of bending and shear deflections of ISB panels to the total deflection was quantitatively examined.

Analysis of Crack Width and Deflection Based on Nonlinear Bond Characteristics in Reinforced Concrete Flexural Members (비선형 부착 특성에 기반한 철근콘크리트 휨부재의 균열폭과 처짐 해석)

  • Lee, Gi-Yeol;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.459-467
    • /
    • 2008
  • This paper describes a proposal for average crack width and immediate deflection calculation in structural concrete members. The model is mathematically derived from actual bond stressslip relationships and tension stiffening effect between reinforcement and the surrounding concrete, and the actual strains of steel and concrete are integrated respectively along the embedded length between the adjacent cracks so as to obtain the difference in the axial elongation. With these, a model for average crack width and immediate deflection in reinforced concrete flexural members are proposed utilizing difference in the axial elongation and average steel strain and moment-curvature relationship with taking account of bond characteristics. The model is applied to the test specimens available in literatures, and the crack width and deflections predicted by the proposal equation in this study are closed to the experimentally measured data compared the current code provisions.

Prediction of Jacking Force Loss for Serviced High Speed Railway PSC BOX Bridge Using Constant Deflection (상시처짐을 이용한 공용중인 고속철도 PSC BOX교의 긴장력 손실 예측)

  • Jung-Youl Choi;Tae-Keun Kim;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.549-555
    • /
    • 2023
  • Jacking force loss management inside the PSC Box girder of a common high-speed railway is a very important feature in girder performance, and requires detailed management during the maintenance of the girder. This study aimed to analyze the timing of re-tension prediction of PSC Box girder based on the reduction level of the packing force inside the girder and the results of the tension loss measured without the train load test. As a result of predicting the timing of re-tension according to the level of tension reduction of the PSC Box Girder, the Jacking Force Loss curve was gently analyzed before the structure reached 17 years after confirmed completion, and 17 years later, it was found that the jacking force loss curve progressed rapidly. The results confirmed that the tension of the structure decreases with the service life increase, but considerably decreases as the structure ages. Therefore, more data and research on tension loss of facilities over 20 years are much required.

Experimental Study of Steel Fiber Concrete Panel (강섬유보강 콘크리트 패널에 대한 실험연구)

  • 박홍용;임상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.307-310
    • /
    • 1999
  • In this panel test, the toughness and post-cracking tensile strength of SFRC(Steel Fiber Reinforced Concrete) measured on 24 panels(size; 60cm $\times$ 60cm $\times$ 10cm) which are the basic characteristics than can determine the load bearing capacity of SFRC are investigated. Those values are calculated using load-deflection curves and load-absorbed energy curves. Post-cracking tensile strength of SFRC in this study are determined by yield line theory. From the test results, it is seen that the higher the volume of steel fiber is, the higher the absorbed energy is.

  • PDF

Performance of Sealing Integrity and Banding strain of HV Polymeric bushing with Thermal Mechanical Test (열-기계적 시험에 따른 초고압 폴리머 부싱의 굽힘변형 및 기밀성능에 관한 연구)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung;Lee, Chul-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1441_1441
    • /
    • 2009
  • This paper describes performance of sealing integrity and bending strain of HV polymeric bushing with thermal mechanical test. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As a results, multi winding bushing shows that it has max deflection in the range of 16.5~16.9 mm.

  • PDF