• 제목/요약/키워드: Deflection Models

검색결과 241건 처리시간 0.022초

Numerical analysis for dynamic characteristics of bridge considering next-generation high-speed train

  • Soon T. Oh;Dong J. Lee;Seong T. Yi;Byeong J. Jeong
    • Advances in Computational Design
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 2023
  • To consider the effects of the increasing speed of next-generation high-speed trains, the existing traffic safety code for railway bridges needs to be improved. This study suggests a numerical method of evaluating the new effects of this increasing speed on railway bridges. A prestressed concrete (PSC) box bridge with a 40 m span length on the Gyeongbu track sector is selected as a representative example of high-speed railway bridges in Korea. Numerical models considering the inertial mass forces of a 38-degree-of-freedom train and the interaction forces with the bridge as well as track irregularities are presented in detail. The vertical deflections and accelerations of the deck are calculated and compared to find the new effects on the bridge arising with increasing speed under simply and continuously supported boundary conditions. The ratios between the static and dynamic responses are calculated as the dynamic amplification factors (DAFs) under different running speeds to evaluate the traffic safety. The maximum deflection and acceleration caused by the running speed are indicated, and regression equations for predicting these quantities based on the speed are also proposed.

현가장치에서의 공기스프링과 겹판스프링의 최적 조합방법 연구 (A Study on the Optimal Combination of Leaf and Air Spring for the Suspension)

  • 최선준;권혁홍;최재찬
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.82-91
    • /
    • 1995
  • Many kind of springs are used in the suspension of automotive vehicles and among these the leaf spring and the air spring are included. These two springs have not been generally used together in one suspension, but recently the automotive models which use these two springs together increase. This reason is due to the merit of the combination of two type springs. The merits are two. One is the character of air spring, that is, the natural frequen- cy of system is constant in spite of variable weight. The other is the character of leaf spring, that is, the suspension mechanism is simple. The combination spring is used in medium size and special purpose bus. In this paper, we formulate the condition which the leaf spring must satisfy to be optimal design in the combination spring. And experiment is performed to prove the theory. The results are that the combination spring is better than leaf spring in the ride, and that the purposed theory is good for the combination spring design.

  • PDF

Mechanical Design for an Optical-telescope Assembly of a Satellite-laser-ranging System

  • Do-Won Kim;Sang-Yeong Park;Hyug-Gyo Rhee;Pilseong Kang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.419-427
    • /
    • 2023
  • The structural design of an optical-telescope assembly (OTA) for satellite laser ranging (SLR) is conducted in two steps. First, the results of a parametric study of the major design variables (e.g. dimension and shape) of the OTA part are explained, and the detailed structural design of the OTA is derived, considering the design requirements. Among the structural-shape concepts of various OTAs, the Serrurier truss concept is selected in this study, and the collimation of the telescope according to the design variables is extensively discussed. After generating finite-element models for different structural shapes, self-gravity analyses are performed. To minimize the deflection and tilt of the mirror and frame for the OTA under the limited design requirements, a parametric study is conducted according to design variables such as the shapes of the upper and lower struts and the spider vane. The structural features found in the parametric study are described. Finally, the OTA structure is designed in detail to maintain the optical alignment by balancing the gravity deflections of the upper and lower trusses using the optimal combination of the parameters. Additionally, thermal analysis of the optical telescope design is evaluated.

Numerical investigations of reinforcement concrete beams with different types of FRP bars

  • Azza M. Al-Ashmawy;Osman Shallan;Tharwat A. Sakr;Hanaa E. Abd-EL-Mottaleb
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.599-608
    • /
    • 2023
  • The present study is focused on instigation of the nonlinear mechanical behavior of reinforced concrete beams considering different types of FRP bars through nonlinear finite element simulations. To explore the impact of the FRP reinforcement type and geometry on the nonlinear mechanical behavior of reinforced beam, intensive parametric studies are carried out and discussed. Twenty models were carried out based on the finite element software (ABAQUS). The concrete damage plasticity model was considered. Four types of fiber polymer bars, CFRP, GFRP, AFRP and BFRP as longitudinal reinforcement for concrete beam were used. The validation of numerical results was confirmed by experimental as well as numerical results, then the parametric study was conducted to evaluate the effect of change in different parameters, such as bar diameter size, type of FRP bars and shear span length. All results were analyzed and discussed through, load-deflection diagram. The results showed that the use of FRP bars in rebar concrete beam improves the beam stiffness and enhance the ultimate load capacity. The load capacity enhanced in the range of (20.44-244.47%) when using different types of FRP bars. The load-carrying capacity of beams reinforced with CFRP is the highest one, beams reinforced with AFRP is higher than that reinforced with BFRP but beams reinforced with GFRP recorded the lowest load of capacity compered with other beams reinforced with FRP Bars.

Estimating the maximum pounding force for steel tall buildings in proximity subjected to wind

  • Tristen Brown;Ahmed Elshaer;Anas Issa
    • Wind and Structures
    • /
    • 제39권1호
    • /
    • pp.47-69
    • /
    • 2024
  • Pounding of structures may result in considerable damages, to the extent of total failure during severe lateral loading events (e.g., earthquakes and wind). With the new generation of tall buildings in densely occupied locations, wind-induced pounding becomes of higher risk due to such structures' large deflections. This paper aims to develop mathematical formulations to determine the maximum pounding force when two adjacent structures come into contact. The study will first investigate wind-induced pounding forces of two equal-height structures with similar dynamic properties. The wind loads will be extracted from the Large Eddy Simulation models and applied to a Finite Element Method model to determine deflections and pounding forces. A Genetic Algorithm is lastly utilized to optimize fitting parameters used to correlate the maximum pounding force to the governing structural parameters. The results of the wind-induced pounding show that structures with a higher natural frequency will produce lower maximum pounding forces than those of the same structure with a lower natural frequency. In addition, taller structures are more susceptible to stronger pounding forces at closer separation distances. It was also found that the complexity of the mathematical formula from optimization depends on achieving a more accurate mapping for the trained database.

72m 초고강도 콘크리트 프리스트레스트 박스 거더의 수치 해석 (Numerical Simulation of 72m-Long Ultra High Performance Concrete Pre-Stressed Box Girder)

  • 비엣 징 마이;한상묵
    • 한국전산구조공학회논문집
    • /
    • 제35권2호
    • /
    • pp.73-82
    • /
    • 2022
  • 이 논문은 72m 초고강도 콘크리트 섬유보강 콘크리트 프리스트레스트 박스거더의 비선형 거동을 해석하는 3차원 해석방법을 제시하였다. UHPC재료의 비선형 거동을 나타내기 위해 콘크리트 손상소성(CDP)모델을 채택하였다. 제시된 응력-변형률 관계 곡선에 근거한 수치해석 모델은 50m UHPC 프리스트레스트 박스 거더 휨실험결과로 검증하였다. 검증된 해석모델을 사용하여 72m UHPC 프리스트레스트 박스거더의 휨거동을 파악하는데 적용하였다. 각 하중단계에 따른 하중 변위관계, 응력상태 및 연결부분 상세를 해석하였다. 하중-변위관계 곡선과 설계하중 및 극한하중 비교 결과는 UHPC 박스거더 휨거동을 해석하는 적절한 수단으로써 비선형 유한요소법의 적용성을 입증하고 있다.

Unified solutions for piezoelectric bilayer cantilevers and solution modifications

  • Wang, Xianfeng;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.759-780
    • /
    • 2015
  • Based on the theory of piezoelasticity, the static performance of a piezoelectric bilayer cantilever fully covered with electrodes on the upper and lower surfaces is studied. Three models are considered, i.e., the sensor model, the driving displacement model and the blocking force model. By establishing suitable boundary conditions and proposing an appropriate Airy stress function, the exact solutions for piezoelectric bilayer cantilevers are obtained, and the effect of ambient thermal excitation is taken into account. Since the layer thicknesses and material parameters are distinguished in different layers, this paper gives unified solutions for composite piezoelectric bilayer cantilevers including piezoelectric bimorph and piezoelectric heterogeneous bimorph, etc. For some special cases, the simplifications of the present results are compared with other solutions given by other researches based on one-dimensional constitutive equations, and some amendments have been found. The present investigation shows: (1) for a PZT-4 piezoelectric bimorph, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are about 19.59%, 23.72% and 7.21%, respectively; (2) for a PZT-4-Al piezoelectric heterogeneous bimorph with constant layer thicknesses, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are 9.85%, 11.78% and 4.07%, respectively, and the amendments of the electrode charges induced by an end shear force or an end moment are both 1.04%; (3) for a PZT-4-Al piezoelectric heterogeneous bimorph with different layer thicknesses, the maximum amendment of tip deflection approaches 23.72%, and the maximum amendment of electrode charge approaches 31.09%. The present solutions can be used to optimize bilayer devices, and the Airy stress function can be used to study other piezoelectric cantilevers including multi-layered piezoelectric cantilevers under corresponding loads.

$CO_2$아크 스폿 용접법에 의한 조립보의 굽힘강도에 관한 연구 (A Study on the Bending Strength of a Built-up Beam Fabricated by the $CO_2$ Arc Spot Welding Method)

  • 한명수;한종만;이준열
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.143-153
    • /
    • 1997
  • In this study, bending test was performed on the real-scale, built-up beam test model fabricated by the $CO_2$ arc spot welding to evaluate the applicability of the welding method to the production of the stiffened plate in car-carrying ship. The built-up beam models which were fixed at both ends in longitudinal direction or simply supported to the rigid foundation, depending on the restraint condition of the corresponding car decks considered, were subjected to simulated design vehicle loads or concentrated point loads. During the test, the central deflection and the longitudinal bending stresses were measured from several points on the longitudinal flange face to predict the section properties of the built-up beams. The longitudinal bending stress on each spot weld were also measured to calculate the average horizontal shear force subjected to spot welds. Test results revealed that the shear strength of spot welds with their current weld nugget size and welding pitch was adequate enough to withstand the horizontal shear forces under the design vehicle loads. Although the built-up beam fabricated by the arc spot welding was a discontinuous beam, its mechanical behavior was well explained by the continuous beam theory using the effective breadth of plate. Based on test results, the criterion for the size of spot weld of which the average shear stress might meet the allowable stress requirement of AWS Code could be established.

  • PDF

플래시 램프를 이용한 비정질 실리콘 결정화 공정에서의 유리기판 열변형 (Thermal Deformation of Glass Backplane during Flash Lamp Crystallization Process of Amorphous Silicon)

  • 김동현;김병국;김형준;정하승;박승호
    • 대한기계학회논문집B
    • /
    • 제36권10호
    • /
    • pp.1025-1032
    • /
    • 2012
  • 플래시 램프 열처리(Flash lamp annealing, FLA) 공정은 저온폴리실리콘의 생산을 위한 기술로써 대면적 기판용 실리콘 결정화 기술로 기대 받고 있는 기술이다. 본 연구에서는 FLA 공정 중 기판에 발생하는 변형의 원인에 대하여 이론적인 해석과 이를 토대로 시뮬레이션을 수행하였다. 상용 FEM 해석프로그램에 고온에서의 유리의 점성에 대한 모델을 적용하여, 고온에서 유리의 구조적인 수축과 응력이완으로 인한 영구변형을 수치적으로 재현하였다. 0 세대 실험시편($2cm{\times}2cm$)의 경우 중력의 영향이 미미하여서, 실험 결과와 일치하는 'U'모양의 변형이 남는 것을 확인하였고, 4 세대 기판($74cm{\times}94cm$)의 경우 중력으로 인하여 'M'모양의 변형이 발생하는 것을 시뮬레이션하였다.

Bending of a rectangular plate resting on a fractionalized Zener foundation

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;Mei, Guo-Xiong
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1069-1084
    • /
    • 2014
  • The long-term performance of plates resting on viscoelastic foundations is a major concern in the analysis of soil-structure interaction. As a powerful mathematical tool, fractional calculus may address these plate-on-foundation problems. In this paper, a fractionalized Zener model is proposed to study the time-dependent behavior of a uniformly loaded rectangular thin foundation plate. By use of the viscoelastic-elastic correspondence principle and the Laplace transforms, the analytical solutions were obtained in terms of the Mittag-Leffler function. Through the analysis of a numerical example, the calculated plate deflection, bending moment and foundation reaction were compared to those from ideal elastic and standard viscoelastic models. It is found that the upper and lower bound solutions of the plate response estimated by the proposed model can be determined using the elastic model. Based on a parametric study, the impacts of model parameters on the long-term performance of a foundation plate were systematically investigated. The results show that the two spring stiffnesses govern the upper and lower bound solutions of the plate response. By varying the values of the fractional differential order and the coefficient of viscosity, the time-dependent behavior of a foundation plate can be accurately captured. The fractional differential order seems to be dependent on the mechanical properties of the ground soil. A sandy foundation will have a small fractional differential order while in order to simulate the creeping of clay foundation, a larger fractional differential order value is needed. The fractionalized Zener model is capable of accounting for the primary and secondary consolidation processes of the foundation soil and can be used to predict the plate performance over many decades of time.