• Title/Summary/Keyword: Deflection Models

Search Result 241, Processing Time 0.028 seconds

Development of Design Formula for Predicting Post-Buckling Behaviour and Ultimate Strength of Cylindrical Shell

  • Lee, Jung-Ho;Oh, Young-Cheol;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • Cylindrical shells are often used in ship structures at deck plating with a camber, side shell plating at fore and aft parts, and bilge structure part. It has been believed that such curved shells can be modelled fundamentally by a part of a cylinder under axial compression. From the estimations with the usage of cylinder models, it is known that, in general, curvature increases the buckling strength of a curved shell subjected to axial compression, and that curvature is also expected to increase the ultimate strength. We conduct series of elasto-plastic large deflection analyses in order to clarify the fundamentals in buckling and plastic collapse behaviour of cylindrical shells under axial compression. From the numerical results, we derive design formula for predicting the ultimate strength of cylindrical shell, based on a series of the nonlinear finite element calculations for all edges, simply supporting plating, varying the slenderness ratio, curvature and aspect ratio, as well as the following design formulae for predicting the ultimate strength of cylindrical shell. From a number of analysis results, fitting curve can be developed to use parameter of slenderness ratio with implementation of the method of least squares. The accuracy of design formulae for evaluating ultimate strength has been confirmed by comparing the calculated results with the FE-analysis results and it has a good agreement to predict their ultimate strength.

Progressive Collapse Resisting Capacity of Moment Frames with Viscous Dampers (점성감쇠기가 설치된 모멘트골조의 연쇄붕괴 저항성능)

  • Kim, Jin-Koo;Lee, Seung-Jun;Choi, Hyun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.517-524
    • /
    • 2010
  • In this paper the progressive collapse resisting capacity of steel moment frames with viscous dampers was evaluated by nonlinear dynamic analysis. The effects of dampers installed in steel beam-column sub-assemblages with varying natural period and yield strength were evaluated after sudden removal of a column. According to the parametric study the vertical displacement general decreased as the damping ratio of the system increased, and the dampers were effective both in elastic and elasto-plastic systems. The nonlinear dynamic analysis results of the 15-story analysis models showed that the decrease in vertical deflection of the structure with 9m span length, which showed larger deflection, was more predominant than that of the structure with 6m span length.

A Study on the Comparison of Triangular and Quadrilateral Elements for the Analysis of 3 Dimensional Plate Structures (3차원 판구조물 해석을 위한 삼각형요소와 사각형 요소의 비교에 관한 연구)

  • 왕지석;김유해;이우수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.344-352
    • /
    • 2002
  • In the analysis of the 3 dimensional plate structures by the finite element method, the triangular elements are generally used for the global stiffness matrix of the analyzed system. But the triangular elements of the plates have some problems in the process of formulation and in the precision of analysis. The formulation of the finite element method to analyze 3 dimensional plate structures using quadrilateral elements is presented in this paper. The degree of freedom off nodal point is 6, that is, the displacements in the direction off-y-z is and the rotations about x-y-z axis and then the degree of freedom off element is 24. For the comparison of the analysis using triangular elements and quadrilateral elements, the rectangular plates subjected to the uniform load and a concentrated load on the centroid of the plate, for which the theoretical solutions have been obtained, are analyzed. The calculated deflections of the rectangular plates using the finite element method by the triangular elements and the quadrilateral elements are also compared with the deflections of the plates calculated by theoretical solutions. The defections of the rectangular plates calculated by the finite element method using the quadrilateral elements are closer to the theoretical solutions than the defections calculated by the finite element method using the triangular elements. The deflection of the centroid of plate, calculated by the finite element method, converges to that of theoretical solution as the number of elements is increased. This convergence is much more rapid for the case of using the quakrilateral elements than fir the case of using triangular elements.

Evaluation for Approximate Bending Moment Coefficients of Non-Composite Form Deck One-Way Slab considering Unequaled Elastic Deflection of Steel Beams (철골보의 부동탄성처짐을 고려한 비합성데크 일방향 슬래브의 근사적인 휨모멘트 계수 평가)

  • Kim, Ho Soo;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.373-383
    • /
    • 2006
  • In a steel structural system, noncomposite form deck one-way slab is the plate element supported by four-edged steel beams with unequaled stiffness. However, design criterion has analyzed the one-way slab as the continuous beam. Because the end beams that support the one-way slab have elastic supports t hat cause different deflections according to the support conditions and locations, the bending moments corresponding to the support ic support effect is not considered in the design criterion. Accordingly, to conduct a reasonable estimation of approximate moment coefficients considering the unequaled elastic support conditions, this study analyzes and estimates various models with varia bles for the ratios of live load to dead load and pattern arangements of live loads and span lengths. The analytical methods considering the finite three-dimensional plate element, the two-dimensional elastic support and the infinite stifnes suport are performed.

Computation of stress-deformation of deep beam with openings using finite element method

  • Senthil, K.;Gupta, A.;Singh, S.P.
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.245-268
    • /
    • 2018
  • The numerical investigations have been carried out on deep beam with opening subjected to static monotonic loading to demonstrate the accuracy and effectiveness of the finite element based numerical models. The simulations were carried out through finite element program ABAQUS/CAE and the results thus obtained were validated with the experiments available in literature. Six simply supported beams were modelled with two square openings of 200 and 250 mm sides considered as opening at centre, top and bottom of the beam. In order to define the material behaviour of concrete and reinforcing steel bar the Concrete Damaged Plasticity model and Johnson-Cook material parameters available in literature were employed. The numerical results were compared with the experiments in terms of ultimate failure load, displacement and von-Mises stresses. In addition to that, seventeen beams were simulated under static loading for studying the effect of opening location, size and shape of the opening and depth, span and shear span to depth ratio of the deep beam. In general, the numerical results accurately predicted the pattern of deformation and displacement and found in good agreement with the experiments. It was concluded that the structural response of deep beam was primarily dependent on the degree of interruption of the natural load path. An increase in opening size from 200 to 250 mm size resulted in an average shear strength reduction of 35%. The deep beams having circular openings undergo lesser deflection and thus they are preferable than square openings. An increase in depth from 500 mm to 550 mm resulted in 78% reduced deflection.

Forces and Displacements of Highrise Braced Frames with Facade Riggers (여러개의 파사드리거를 갖는 고층구조물의 응력과 변위)

  • Yuk, Min-Hye;Jung, Dong-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • In the conventional outrigger system, the outriggers are located in the planes of the core walls and this system has disadvantage of obstructing flexibility in the interior layout. But thc facade riggers in the structure uc located In the exterior frames in the direction of the lateral loading. The interaction between the traced frames and facade riggers is through the floor diaphragms adjacent to the chords of the riggers. This paper presents an approximate analysis technique lot preliminary analysis of multiple facade rigger stiffened braced frames in tall buildings subjected to uniformly and triangularly distributed loads as well as a lateral point load at the top of the structure. Comparisons with the results by the program MIDAS for the structural models have shown that this analysis can give reasonably accurate results for highrise braced frames with multiple facade riggers. The method allows a simple procedure for obtaining the optimum level of the facade riggers in addition to a rapid assessment of the influence of the facade riggers on the performance of the highrise structure such as the reduction in lateral deflection at the top and the overturning moment at the base of the braced frame.

Ultimate Analysis of Reinforced Concrete Beams (철근콘크리트 보의 극한해석)

  • 김태형;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.145-155
    • /
    • 1995
  • The purpose of this paper is to present an analysis method which can exactly analyze load-deflection relationships. crack propagations and stresses and strains of steel reinforccnlent and concrete in hehaviors of elastic, mclastic and ultlmate ranges of reinforced concretc beams under monotonically increasing loads. For these purposes, the material nonlinearities are taken into account by comprising the tension. compression and shear models of cracked concrete and a model for reinforcement in the concrete. Smeared crack model is used as a modeling of concrete. The steel reinforcement is assumed to be in an uniaxial stress state and modeled srncaretl layers of eqivalent thickness and line elernents for correct positiori arid behavior. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzed and compared with those from other researchers. As a results, this method shown in 3.5-15(%) error is correct.

Rotordynamic Performance Predictions of Tilting Pad Journal Bearing with Rocker-Back Pivots and Comparison with Published Test Results (로커-백 피벗을 갖는 틸팅 패드 저널 베어링의 회전체동역학적 성능 예측 및 기존 결과와의 비교)

  • Kim, Tae Ho;Choi, Tae Gyu;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.294-301
    • /
    • 2015
  • In this paper, we predict the rotordynamic force coefficients of tilting pad journal bearings (TPJBs) with rocker-back pivots, and we compare the predictions to recently published predictions and test data. The present TPJB model considers the rocker-back pivot stiffness calculated based on the Hertzian contact-stress theory, which is nonlinear with the application of a force . For the five-pad TPJB in load-between-pad and load-on-pad configurations, the predictions show the pressure- and film-thickness distributions, the deflection and stiffness of the individual pivots, and bearing stiffness and damping coefficients. The minimum film thickness and peak pressure occur at the bottom pad on which the applied load is directed. Because of the preload, the pres- sure is positive even at the upper pad in the opposite direction to the applied load. The pivot deflection and stiff- ness are maximum at the bottom pad that receives the heaviest pressure load. The predicted stiffness coefficients increase as the static load and rotor speed increase, while the damping coefficients decrease as the rotor speed increases, but increase as the static load increases. In general, the predicted stiffness coefficients agree well with the test data. The predicted damping coefficients overestimate the test data, particularly for large static loads. In general, the current predictive model considering the pivot stiffness improves the accuracy of the rotordynamic performance compared to previously reported models.

A Study on the Viscoelastic Model of Asphalt Concrete Pavement (아스팔트 포장의 점탄성 거동 모델에 관한 연구)

  • Jo, Byung Wan;Tae, Ghi Ho;Noh, Dong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.429-437
    • /
    • 2006
  • Existing basic mechanical models which are methods characterizing viscoelastic materials were first reviewed to account for viscoelastic behavior of the asphalt pavement structure in this paper. A viscoelastic mechanical model considering a single load of vehicles subsequently was suggested and an equation that indicates the time-dependant behavior of asphalt pavements was derived from the proposed model. Non-destructive tests using falling weight deflectometer(FWD) were performed for a test section to estimate the application of the model. Both deflections and strains procured by the equation were compared to testing results according to loading history. By observing field measurements and theoretical evaluations, if two results are compared by the features of deflection according to time history, it could be concluded that the proposed model is expected to be suitable for prediction of the behavior of asphalt pavements because there is hardly difference between field data and calculated data.

Pattern Development of Waist / Abdominal Area of Obese Womem Using 3D Geometrical Model (3D모델을 이용한 비만체형 여성의 허리-배 부위 패턴 특성 연구)

  • Kim, So-Young;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1018-1026
    • /
    • 2005
  • Recent development of 3D scanner and software is regarded as a promising method of acquiring replicas from human body indirectly. It would be very helpful if we could predict the characteristics of 2D pattern from the simple parameters related to 3D shape for ordinary user. Therefore, in this study, investigation of 2D pattern of waist/abdominal area from the 3D geometrical model was conducted for the pattern development of waist nipper. To create body models and develop the surface of them, one ortho commonly used CAD/CAM program, IDEAS(UGS-plm solutions, USA) was used. As for the size of the models, the width, thickness, and circumference ranges of adult women's torso reported in National Anthropometric Survey of Korea (1997) were used as a standard model. Seven size variations were made by changing the width of the waist only, from 19 cm to 40 cm. Therefore, simulated body models include not only the normal body but also obese body who has wider waist and abdomen width than hip width. As results, it was found that the curvature of the unfolded 2D pattern around the abdominal area decreases as the waist width increases. As the width of the waist increases more and more, so that the comparative ratios around the torso becomes in abnormal ranges, there appears inflection points and the direction of curvature was changed. 2D Patterns obtained in this research were quantified by curvature, length of the curve and angle of deflection in the reference frame box for the convenience of the actual pattern making process. It was also possible to find that the shape of patterns of abnormal body resulted in a quite interesting change in the curves of 2D pattern, which could be applied to the custom made waist nipper for obese women.