• Title/Summary/Keyword: Deflection Analysis

Search Result 1,700, Processing Time 0.033 seconds

Handling Deflection Limit in Open-Loop-Onset-Point PIO Analysis (Open-Loop-Onset-Point PIO 해석의 변위한계)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • A new treatment is proposed to handle a deflection limit in the open-loop-onset-point (OLOP), which is commonly used in the prediction of pilot in-the-loop oscillation (PIO) due to a rate saturation. The new approach is motivated by the frequency response of a stand-alone actuator in that, unlike the suggestion by the original OLOP procedure, the rate limit onset is not delayed to a higher frequency by a deflection limit. Indeed, if a feedback control loop is closed, the rate limit onset can be shifted to a lower frequency since the controller tends to react with larger commands when deflection limited. The amplitude of the command at this onset frequency is combined with the deflection limit to estimate the associated gain reduction in the open-loop-onset-point in the final step of the OLOP process. The comparison of the new approach with the previous method reveals that an inaccurate optimism which can occur in the previous method is corrected by the proposed treatment.

Reliability Analysis Model for Deflection Limit State of Deteriorated Steel Girder Bridges (처짐한계상태함수를 이용한 노후 강거더 교량의 신뢰성해석 모델 구축)

  • Eom, Jun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • The paper investigates the limit state of deflection for short and medium span steel girder bridges. Deflection depends on stiffness of steel girders and integrity of the reinforced concrete slab (composite action). Load and resistance parameters are treated as random variables. A probabilistic model is developed for prediction of the deflection. The structural performance can be affected by deterioration of components, in particular corrosion of steel girders. In addition, the creep of concrete can greatly influence the deflection of composite structures. Therefore, the statistical models for creep and corrosion of structural steel are incorporated in the model. Structures designed according to the AASHTO LRFD Code are considered. Load and resistance models are developed to account for time-variability of the parameters. Monte Carlo simulations are used to estimate the deflections and probabilities of serviceability failure. Different span lengths and girder spacing are considered for structures designed as moment-controlled and deflection-controlled. A summary of obtained results is presented.

Correlation Between Crack Widths and Deflection in Reinforced Concrete Beams (철근콘크리트 보의 균열 폭과 처짐 관계)

  • Kang, Ju-Oh;Kim, Kang-Su;Lee, Deuck-Hang;Lee, Seung-Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.184-192
    • /
    • 2010
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete (RC) structures, and the concept of the effective moment of inertia has been generally used for its estimation. However, the actual service load applied on an existing RC beam may not be easily obtained, for which the estimation of beam deflection by existing methods can be difficult to obtain. Therefore, based on the correlation between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member as its input data. The proposed method extensively utilized the relationships among sums of crack widths, average strains, and curvatures, and modification factors obtained from regression analysis were also introduced to improve its accuracy. The deflections of members were successfully estimated by the proposed method independent from applied loads, which was also easy to apply compared to the existing methods based on the effective moment of inertia.

A Study on Application of GPS for Deflection Management of Curved PCT Girder Bridge under Construction (시공 중 곡선형 PCT 거더교의 처짐 관리를 위한 GPS 적용 연구)

  • Kyu Dal, Lee;Jin Duk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.453-461
    • /
    • 2015
  • In order to manage the deflection of a curved PCT girder bridge during construction, a GPS receiver was installed at the spot predicted to be the weak point during the incremental launching so as to measure the deflection at each construction stage. The deflections obtained in the experiment were compared with those derived from the monitoring of stress, temperature and inclination. The comparative analysis of the GPS measurement and analytical values obtained from finite element modeling with respect to the launching distance showed that the measured values differ by 0.6 to 1.6 times to the analytical results. This difference could be significantly reduced by thermal calibration. From the analysis of the behavioral pattern of the bridge, deflection occurred during construction in the concrete tip due to the deflection at the head of the nose at the 95m and 75m-spots, and compression and tension developed respectively at the compression weak zone and tension weak zone. The application of GPS appeared to enable more efficient management of the deflection during the erection of the curved PCT girder bridge and is expected to be helpful for the prediction and management of the behavior in future ILM construction sites.

Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites Using 3-D Shell Elements (3차원 셸 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소해석)

  • Lee, Hyoung-Wook;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.602-609
    • /
    • 2001
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zeroenergy mode of the element. The analysis includes an inflation analysis and a lateral analysis of an air spring for the deformed shape and the spring load with respect to the vertical and l ateral deflection. Numerical results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force with respect to the inflation pressure and the lateral deflection.

Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석)

  • 성원진;김정현;윤성욱;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF

복합재료 적층판의 유한요소법 기반 역학적 거동 해석

  • Im, Yeong-Nam;Cheon, Jae-Hui;Lee, Ho-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.285-291
    • /
    • 2015
  • In this paper, a composite material analysis program based on the finite element method(FEM) is used. The purpose of this study was to verify whether the composite material analysis program which developed as part of a project of development of softwares and educational contents for structural vibration and composite material analysis that can calculate how similar the macroscopic mechanical behavior of the composite materials actually. Because composite materials are generally anisotropic, analysis of composite laminate is used for the constitutive equations of orthotropic material. For convenience, the unit is ommited in all calculations. To verify the accuracy of the finite element method based program, the deflection and stress distribution of the simply supported composite material laminated plate subjected to a uniform load distribution is compared with exact solution. Size and properties of the composite material laminate used for analysis are fixed variables, and by changing the number of elements and the total thickness of the laminate is compared with the exact solution to the resulting value, respectively.

  • PDF

Analysis of Combustion and Flame Propagation Characteristics of LPG and Gasoline Fuels by Laser Deflection Method

  • Lee, Ki-Hyung;Lee, Chang-Sik;Ryu, Jea-Duk;Park, Gyung-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.935-941
    • /
    • 2002
  • This work is to investigate the combustion characteristics and flame propagation of the LPG (liquified petroleum gas) and gasoline fuel. In order to characterize the combustion processes of the fuels, the flame propagation and combustion characteristics were investigated by using a constant volume combustion chamber The flame propagation of both LPG and gasoline fuels was investigated by the laser deflection method and the high-speed Schlieren photography. The result of laser deflection method show that the error of measured flame propagation speed by laser method is less than 5% compared with the result of high-speed camera. The flame propagation speed of the fuel is increased with the decrease of initial pressure and the increase of initial temperature in the constant volume chamber. The results also show that the equivalence ratio has a grate effect on the flame speed, combustion pressure and the combustion duration of the fuel-air mixture.

Dynamic Responses Characteristics of Steel Box Railway Bridges Subjected to Train Loading (열차주행에 따른 강박스 철도교의 동적응답특성)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jo, Eun-Pyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.772-778
    • /
    • 2009
  • By rising the interests of the railroad, It has been required the research about railroad structure. And since 2000, the study about railway bridges caused by steel box railway bridges has been only 0.2%. So I was hard to find out about steel box railway bridges. In this study, I evaluate and analyze 4 types(KTX, Saemaeul, Mugunghwa, Freight) of dynamic caused by train loading, natural frequency and damping ratio, verticality deflection and verticality acceleration, end slope deflection, impact factor for dynamic characteristics analysis. natural frequency was measured 2.45Hz~3.34Hz and damping ratio revealed for 1.26~2.84%. Maximum verticality deflection(4.86mm) was sufficiently satisfied the design criteria(30.1mm), but in the case of verticality acceleration's respond, design criteria BRDM(Bridge Design Manual) & CTRL presentation derive rail limit value 0.35g be more than value 6 time recorded, maximum was measured 0.49g in 3 kinds of train(KTX, Saemaeul, Mugunghwa), except for Freight. Survey impact factor of Experiment bridge was 0.20 which is measured when the KTX(15:04) was driving. impact factor is enough contended with design criteria 0.29 which is presented in domestic railway design criteria and thoroughly guarantee the dynamic stability.

  • PDF

A Study on Variation of Impact Factors of Simple and Continuous Steel Highway Bridges (단순 및 연속 강도로교의 충격계수 변화에 관한 연구)

  • 장동일;이희현
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.123-133
    • /
    • 1988
  • A method to calculate maximum dynamic deflection, which is close to the measured deflection, was proposed by comparing the real deflection with the claculated one in three span continuous highway steel bridge. From this, the pattern of variation of impact factors depending an vehicle speeds and weights was studied in simple and continuous bridges. From the numerical analysis, it was known that the maximum dynamic deflection which is close to the measured one could be obtained by using the transformed flexural rigidity of a bridge, and the factors are generally increased with increasing vehicle speed. However, it was thought that there are some problems in the code specification about the impact factors of the continuous bridges.

  • PDF