• Title/Summary/Keyword: Defect generation

Search Result 213, Processing Time 0.031 seconds

A Reliability Study of the Phased Array Ultrasonic Testing: Case Study for the Composite Blades of Wind Power Generation (위상배열 초음파 탐지검사의 신뢰성에 관한 연구: 풍력발전기 복합소재 블레이드 사례연구)

  • Kang, Byung Kwon;Lim, Ik Sung;Koo, Ilseob
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.338-346
    • /
    • 2016
  • Purpose: The purpose of this research is to improve the reliability of the composite material blades used for the wind power generator, by applying the phased array ultrasonic testing technique out of the many nondestructive test into the blades. Method: The wind power generation composite blades are used, as a case study, in order to evaluate the reliability of the phased array ultrasonic testing technique. Defects that are most likely occurred in the field are injected into the different locations of the three different types of artificial test pieces and then phased array ultrasonic testing technique are applied to evaluate the reliability of its effectiveness. Result: As a result of the analysis of the defect signals by applying the A scan and B scan simultaneously, depth and width of the defect could be obtained. An area of defect was proportional to the amount of energy by color in B scan image. The larger amount of energy, reflected amount of energy was appeared in the order of red, orange, yellow, blue color. Conclusion: The most reliable testing method to detect the defect in composite blades for wind power generation is considered to be the combination of the other destructive testing technique with the phased array ultrasonic testing since the PAUT alone could not detect all range of the defects in the blades.

A neural network approach to defect classification on printed circuit boards (인쇄 회로 기판의 결함 검출 및 인식 알고리즘)

  • An, Sang-Seop;No, Byeong-Ok;Yu, Yeong-Gi;Jo, Hyeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.337-343
    • /
    • 1996
  • In this paper, we investigate the defect detection by making use of pre-made reference image data and classify the defects by using the artificial neural network. The approach is composed of three main parts. The first step consists of a proper generation of two reference image data by using a low level morphological technique. The second step proceeds by performing three times logical bit operations between two ready-made reference images and just captured image to be tested. This results in defects image only. In the third step, by extracting four features from each detected defect, followed by assigning them into the input nodes of an already trained artificial neural network we can obtain a defect class corresponding to the features. All of the image data are formed in a bit level for the reduction of data size as well as time saving. Experimental results show that proposed algorithms are found to be effective for flexible defect detection, robust classification, and high speed process by adopting a simple logic operation.

  • PDF

Optimal Test Condition by Ultrasonic Simulation (초음파 시뮬레이션을 이용한 최적의 탐상조건)

  • Huh, Sun-Chul;Park, Young-Chul;Boo, Myung-Hwan;Kang, Jung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.45-54
    • /
    • 1999
  • Non destructive test is applied to revise mechanical strength and assume material strength or defect of material, equipment and structure, instead of fracture test. Especially, ultrasonic test has the characteristics such as an excellent permeability high-sensitiveness to fine defect and an almost exact measurement for position, size and direction of inner defect which differ from other non destructive tests. In this study, the program is developed to evaluate optimal testing condition, to distinguish obstacle echo and defect position. This program on the basic of Ray-Tracing model shows generation and processing of ultrasonic pulse. The simulation is compared with testing in the 3 cases of an oblique angle transducer like $45^{\circ},\;60^{\circ}\;and\;70^{\circ}$. The test result for all conditions is well compared with simulation result when relative not is within $0.1{\sim}7.2%$. And the course of several echos is simply assumed through simulation.

  • PDF

A Field Investigation of Defect Type for Development of Maintenance Manual of Han-ok (한옥 유지관리매뉴얼 개발을 위한 결함 유형 현장 조사)

  • Lee, Jong Shin;Choi, Gwang Sik;Yang, Jeong Moo
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.3
    • /
    • pp.302-308
    • /
    • 2013
  • To collection of field data for development of maintenance manual of Han-ok, we investigated defects which occurred in members of Han-ok by field investigation. The noticeable defects were wood cracks, gaps that developed between wood pillar and wall or wood window frame and tenon joints. The most common biological defect was blue stain which was created in log. The mold generation was observed on exterior wood and wall which get wet by precipitation. The gaps between members of Han-ok pointed out as defect that is urgently improved by residents of Han-ok. The reason is mainly due to poor of insulation in winter by bad confidentiality. The maintenance work of defect such as gap was conducted personally. As a result, the repair parts were ugly for unfamiliar repair work.

  • PDF

The study of GaN-based semiconductors with low-defect density by microstructural characterization (미세구조 분석을 이용한 저밀도 결함을 가진 GaN계 반도체 연구)

  • Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.424-427
    • /
    • 2003
  • We have investigated the microstructural analysis of epitaxial lateral overgrowth (ELO), pendeoepitaxy (PE), and superlattice structures used as technology for the reduction of structural defects like dislocation in nitride semiconductors using transmission electron microscopy. We confirmed that the regrowth process such as ELO and PE is very effective technique on the reduction of threading dislocation (less than $10^6/cm^2$) in the specific area. However, to decrease the defect density in the whole nitride films and the suppress the generation of defect by regrowth, we should find the optimized conditions. Besides, the process using double PE and AlGaN/GaN superlattice structure showed no effect on the defect reduction up to now.

  • PDF

A Case Study on Malfunction of OCGR and Inaccuracy of Watt-hour Meter in Distributed Generation System (분산형 발전고객의 OCGR오동작 및 과부족 계량에 대한 사례연구)

  • Shin, Dong-Yeol;Park, Yong-Woo;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1349-1355
    • /
    • 2008
  • The paper shows the analysis of operating conflict of OCGR trip events and metering errors in the photovoltaic generation, wind generation distributed generation customers with no defect of the distributed generation facilities, which are connected to 22.9kV distribution lines. To analyze problems with metering errors and OCGR fault event, a power quality analyzer and PSIM program were used to test the field and to simulate in Sun-Cheon photovoltaic generation and Seo-Cheon photovoltaic generation customers. With the trial distribution line, the result of analysis was verified to prove with the same situation of the actual field. This paper suggests short term and long term countermeasures of OCGR fault events, analysis of over and shortage of metering errors in distributed generation customers.

Fast Generation of Binary Random Sequences by Use of Random Sampling Method

  • Harada, Hiroshi;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.240-244
    • /
    • 1992
  • A new method for generation of binary random sequences, called random sampling method, has been proposed by the authors. However, the random sampling method has the defect that binary random sequence can not be rapidly generated. In this paper, two methods based on the random sampling method are proposed for fast generation of binary random sequences. The optimum conditions for obtaining ideal binary random sequences are derived.

  • PDF

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

INFLUENCE OF INCLUSION ON INTERNAL DEFECT IN MULTI-STAGE EXTRUSION

  • Yoshida Y.;Fukaya Y.;Yukawa N.;Ishikawa T.;Ito K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.51-54
    • /
    • 2003
  • Internal defects such as chevron crack occasionally occur in the process of cold extrusion or cold drawing. It is known that the existence and property of inclusion greatly influences the generation of the internal crack. However, in the plastic working field, research about the effect of the inclusion on the fracture is not theoretically analyzed. This paper describes effects of the physical property of inclusion on the internal fracture generation in the process. Prediction of fracture was evaluated by critical damage value calculated by the equation of Cockcroft & Latham and its change by the inclusion physical property such as size and stiffness was investigated.

  • PDF