• 제목/요약/키워드: Defect generation

검색결과 213건 처리시간 0.023초

가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석 (Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography)

  • 유영재;정성민;배시영
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.192-195
    • /
    • 2019
  • Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

딥러닝 훈련을 위한 GAN 기반 거짓 영상 분석효과에 대한 연구 (Effective Analsis of GAN based Fake Date for the Deep Learning Model )

  • 장승민;손승우;김봉석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.137-141
    • /
    • 2022
  • To inspect the power facility faults using artificial intelligence, it need that improve the accuracy of the diagnostic model are required. Data augmentation skill using generative adversarial network (GAN) is one of the best ways to improve deep learning performance. GAN model can create realistic-looking fake images using two competitive learning networks such as discriminator and generator. In this study, we intend to verify the effectiveness of virtual data generation technology by including the fake image of power facility generated through GAN in the deep learning training set. The GAN-based fake image was created for damage of LP insulator, and ResNet based normal and defect classification model was developed to verify the effect. Through this, we analyzed the model accuracy according to the ratio of normal and defective training data.

간세포성장인자가 골결손부의 치유에 미치는 영향 (THE EFFECT OF HEPATOCYTE GROWTH FACTOR FOR REPAIR OF THE BONE DEFECT)

  • 신상훈;김창주;김철훈;김용덕;정인교
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권5호
    • /
    • pp.380-390
    • /
    • 2004
  • Bone healing plays an important role in orthognathic and craniofacial surgery. Bone tissue repair and regeneration are regulated by an array of growth and morphogenetic factors. Bone formation and remodeling require continuous generation of osteoprogenitor cells from bone marrow stromal cells, which generate and respond to a variety of growth factors with putative roles in hematopoiesis and mesenchymal differentiation. In this study, the efficacy of a single application of hepatocyte growth factor to promote bone regeneration in 5-mm experimental calvarial defects of adult male rats was assessed histologically and immunohistochemically. The result of the experimental site were compared with those of the contralateral contral side. None of the control and experimental bone defects demonstrated complete bone closure. Bone regeneration was found close th the margine and central part of the defects. At 1, 2 weeks, there were found much significant cellural mitotic activity and many inflammatory cells and osteoblasts on the experimental site than control site. At 4, 6 weeks, new bone apposition was founded in both site but, more apposition was seen at experimental site. At 8, 12 weeks, also, some differences was found that more apposition of new bone and collagen fiber was seen on experimental site. Our results have some possibility that HGF do a early positive role to repair the bone defect. More study will be needed.

GIS 부분방전 신호와 도착 시간차 분석을 통한 PD발생 위치 추적 (Partial Discharge Position Tracking Method using a GIS Partial Discharge Signal and Arrival Time Difference)

  • 최문규;차한주
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1297-1301
    • /
    • 2013
  • This paper analyzes of PD occurrence position through an analysis of the arrival time difference between the GIS partial discharge signal. Because of GIS (Gas Insulated Switchgear) is a facility very important power equipment and as part of the equipment that make up the power system, the stabilization of the power industry, which accounted for 88.5% share of GIS substation in the form of a substation is an important equipment for power supply. In the situation where we are gradually expanding the need for preventive diagnosis in order to improve the efficiency of equipment management and failure prevention for Preventive diagnosis. In this paper as a method for extracting pre-defect of failure of GIS Apply the average value method of calculating the 5 times each using a pulse of the first time of the second pulse (${\Delta}t$) with an oscilloscope generation position PD(Partial Discharge). the results of GIS internal inspection, the partial discharge of the actual the position of the partial discharge was confirmed with an accuracy of about 82% of positions. Arrival time difference in the most effective manner if the partial discharge of GIS internal occurs by applying the averaging method and TOA(Time of arrival) method, the partial discharge occurs you through the measurement and analysis of PD signal occurs was confirmed in the experiment are presented and diagnostic methods location tracking.

Correlation between terahertz characteristics and defect states in LTG-InGaAs

  • 박동우;김준오;이상준;김창수;이대수;노삼규;강철;기철식;김진수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.243-243
    • /
    • 2010
  • Low-temperature grown (LTG) InGaAs epilayers were grown by MBE technique for studying a correlation between terahertz (THz) emission and the intrinsic defects. The 1.2-um-thick Be-compensated LTG-InGaAs epilayers were prepared on SI-InP:Fe substrate at $200-250^{\circ}C$, and subsequently in-situ annealed under As environment at $550^{\circ}C$ for 5-30 minutes. The carrier concentration/mobility and the crystalline structure were analyzed by the Hall effect and the x-ray diffraction (XRD), respectively, and the carrier lifetime were determined by the fs time-resolved pump-probe spectroscopy. THz generation from LTG-InGaAs was carried out by a Ti-sapphire laser (800 nm) of a pulse width of 190 fs at a repetition of 76 MHz. Figure shows the spectral amplitude of generated waves in the THz region. As the growth temperature of epilayer increases, the amplitude is enhanced. However, two samples grown at $200^{\circ}C$, as-grown and annealed, show almost no difference in the spectral amplitude. This suggests that the growth temperature is critical in the formation of defect states involved in THz emission. We are now investigating the correlations between the XRD band attributed to defects, the Hall parameter, and the spectral amplitude of generated THz wave.

  • PDF

XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성 (Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy)

  • 오데레사
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.580-585
    • /
    • 2013
  • To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

48개 채널의 GM Tube 센서 테스터 장치의 설계 (Design of Tester Apparatus for 48 Channel GM Tube Sensor)

  • 이희열;이주현;이승호
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.310-313
    • /
    • 2016
  • 본 논문에서는 48개 채널의 GM Tube 센서 테스터 장치를 설계한다. 제안하는 장치는 48 채널의 GM Tube 센서들을 동시에 테스트하여 불량의 여부 및 센서 특성을 분석한다. 시간의 변화에 따라 달라지는 센서의 특성에 적합한 300 ~ 1000V의 가변 고전압을 발생할 수 있는 회로로 센서의 특성을 분석한다. 따라서 다양한 종류의 GM Tube 센서의 특성 분석에 용이하게 사용된다. 제안하는 장치를 통해 대량의 GM Tube를 동시에 테스트 할 수 있는 환경이 구축되어 센서의 불량 여부 및 센서의 특성을 미리 파악하여 생산 및 재작업 등에 소요되는 비용을 대폭 줄일 수 있다. 개발된 48 채널 GM Tube 센서 테스터 장치의 측정 불확도에 대하여 공인 시험기관의 장비를 사용하여 실험한 결과 우수한 성능을 나타내었다.

센서네트워크용 Sequenced Directed Diffusion 기법 연구 (A study on a sequenced directed diffusion algorithm for sensor networks)

  • 장재신
    • 한국정보통신학회논문지
    • /
    • 제11권5호
    • /
    • pp.889-896
    • /
    • 2007
  • 센서기술 및 무선통신 기술의 발달로 센서네트워크에 대한 연구가 가속화되고 있다. 센서노드는 크기 및 용량의 제한 때문에 간단하면서 에너지를 효율적으로 사용할 수 있는 프로토콜을 설계하는 것이 매우 중요하다. 기존 센서네트워크용 라우팅 프로토콜로 널리 알려져 있는 directed diffusion 프로토콜은 간단하다는 장점을 갖지만 Interest/Exploratory data 메시지를 Flooding 기법에 따라 전송하게 됨에 따라 에너지 소모가 크다는 단점을 가지고 있다. 따라서 본 논문에서는 directed diffusion 기법이 가진 단점을 보완하면서 각 센서노드가 에너지를 균형 있게 소비할 수 있는 설계된 센서 네트워크 용 라우팅 기법을 제안하고 시뮬레이션을 통해 성능평가를 수행하였다. 성능평가 결과에 따르면 본 연구에서 제안한 라우팅 프로토콜이 기존 directed diffusion 기법에 비해 에너지를 훨씬 효율적으로 사용하면서 센서노드간 에너지 소비 불균형 문제를 해결하고 있음을 수치계산 결과를 통해 확인할 수 있었다.

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

  • Yu, Nanjie;Ballato, John;Digonnet, Michel J.F.;Dragic, Peter D.
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.521-549
    • /
    • 2022
  • Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

4H-SiC PiN 다이오드의 깊은 준위 결함에 따른 전기적 특성 분석 (Analysis of Electrical Characteristics due to Deep Level Defects in 4H-SiC PiN Diodes)

  • 이태희;박세림;김예진;박승현;김일룡;김민규;임병철;구상모
    • 한국재료학회지
    • /
    • 제34권2호
    • /
    • pp.111-115
    • /
    • 2024
  • Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.