• 제목/요약/키워드: Defect generation

검색결과 213건 처리시간 0.023초

Quantum Mechanical Simulation for the Analysis, Optimization and Accelerated Development of Precursors and Processes for Atomic Layer Deposition (ALD)

  • Mustard, Thomas Jeffrey Lomax;Kwak, Hyunwook Shaun;Goldberg, Alexander;Gavartin, Jacob;Morisato, Tsuguo;Yoshidome, Daisuke;Halls, Mathew David
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.317-324
    • /
    • 2016
  • Continued miniaturization and increasingly exact requirements for thin film deposition in the semiconductor industry is driving the search for new effective, efficient, selective precursors and processes. The requirements of defect-free, conformal films, and precise thickness control have focused attention on atomic layer deposition (ALD). ALD precursors so far have been developed through a trial-and-error experimental approach, leveraging the expertise and tribal knowledge of individual research groups. Precursors can show significant variation in performance, depending on specific choice of co-reactant, deposition stage, and processing conditions. The chemical design space for reactive thin film precursors is enormous and there is urgent need for the development of computational approaches to help identify new ligand-metal architectures and functional co-reactants that deliver the required surface activity for next-generation thin-film deposition processes. In this paper we discuss quantum mechanical simulation (e.g. density functional theory, DFT) applied to ALD precursor reactivity and state-of-the-art automated screening approaches to assist experimental efforts leading toward optimized precursors for next-generation ALD processes.

Efficient Algorithm for Real-time Generation of Reflection Lines

  • Kim, Tae-wan;Juyup Kang;Lee, Kunwoo;Park, Sangkun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.160-171
    • /
    • 2001
  • Depending upon the method of the surface generation and the quality of the designed boundary curves, the resulting surfaces may have global or local irregularities in many cases. Thus, it would be necessary for the designer to evaluate the surface quality and to modify the surface. This is very important because the defect of the surface causes the rework of the dies, increasing cost and delivery time significantly. To simulate the reflection line test in the actual production line, a faster algorithm for generating reflection lines is presented. In this paper, among various surface interrogation methods using reflection lines, Blinn-Newell type of reflection mapping is applied to generate the reflection lines on the trimmed NURBS surfaces. The derivation of reflection lines is formulated as a surface-plane intersection problem (Jung 1994) and is solved by surface-contouring techniques. Also, for eliminating the discontinuity of reflection lines due to the configuration of reflection map, a modified reflection map is proposed. An efficient traced contouring technique is utilized for the computational efficiency and proves to be well suited for the real-time quality-assessment task.

  • PDF

수소 및 중수소가 포함된 실리콘 산화막의 전기적 스트레스에 의한 열화특성 (Degradation of Ultra-thin SiO2 film Incorporated with Hydrogen or Deuterium Bonds during Electrical Stress)

  • 이재성;백종무;정영철;도승우;이용현
    • 한국전기전자재료학회논문지
    • /
    • 제18권11호
    • /
    • pp.996-1000
    • /
    • 2005
  • Experimental results are presented for the degradation of 3 nm-thick gate oxide $(SiO_2)$ under both Negative-bias Temperature Instability (NBTI) and Hot-carrier-induced (HCI) stresses using P and NMOSFETS, The devices are annealed with hydrogen or deuterium gas at high-pressure $(1\~5\;atm.)$ to introduce higher concentration in the gate oxide. Both interface trap and oxide bulk trap are found to dominate the reliability of gate oxide during electrical stress. The degradation mechanism depends on the condition of electrical stress that could change the location of damage area in the gate oxide. It was found the trap generation in the gate oxide film is mainly related to the breakage of Si-H bonds in the interface or the bulk area. We suggest that deuterium bonds in $SiO_2$ film are effective in suppressing the generation of traps related to the energetic hot carriers.

Damage detection for pipeline structures using optic-based active sensing

  • Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.461-472
    • /
    • 2012
  • This study proposes an optics-based active sensing system for continuous monitoring of underground pipelines in nuclear power plants (NPPs). The proposed system generates and measures guided waves using a single laser source and optical cables. First, a tunable laser is used as a common power source for guided wave generation and sensing. This source laser beam is transmitted through an optical fiber, and the fiber is split into two. One of them is used to actuate macro fiber composite (MFC) transducers for guided wave generation, and the other optical fiber is used with fiber Bragg grating (FBG) sensors to measure guided wave responses. The MFC transducers placed along a circumferential direction of a pipe at one end generate longitudinal and flexural modes, and the corresponding responses are measured using FBG sensors instrumented in the same configuration at the other end. The generated guided waves interact with a defect, and this interaction causes changes in response signals. Then, a damage-sensitive feature is extracted from the response signals using the axi-symmetry nature of the measured pitch-catch signals. The feasibility of the proposed system has been examined through a laboratory experiment.

양자 정보 기술을 위한 양자 광원 연구 동향 (Research Trend of Quantum Light Source for Quantum Information Technology)

  • 고영호;김갑중;최병석;한원석;윤천주;주정진
    • 전자통신동향분석
    • /
    • 제34권5호
    • /
    • pp.99-112
    • /
    • 2019
  • A quantum light source is an essential element for quantum information technology, including quantum communication, quantum sensor, and quantum computer. Quantum light sources including photon number state, entangled state, and squeezed state can be divided into two types according to the generation mechanism, namely single emitter and non-linear based systems. The single emitter platform contains atom/ion trap, solid-state defect/color center, two-dimensional material, and semiconductor quantum dot, which can emit deterministic photons. The non-linear based platform contains spontaneous parametric down-conversion and spontaneous four-wave mixing, which can emit probabilistic photon pairs. For each platform, we give an overview of the recent research trends of the generation, manipulation, and integration of single photon and entangled photon sources. The characteristics of quantum light sources are investigated for each platform. In addition, we briefly introduce quantum sensing, quantum communication, and quantum computing applications based on quantum light sources. We discuss the challenges and prospects of quantum light sources for quantum information technology.

Numerical Analyses on the Formation, Propagation, and Deformation of Landslide Tsunami Using LS-DYNA and NWT

  • Seo, Minjang;Yeom, Gyeong-Seon;Lee, Changmin;Lee, Woo-Dong
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.11-20
    • /
    • 2022
  • Generally, tsunamis are generated by the rapid crustal movements of the ocean floor. Other factors of tsunami generation include landslides on coastal and ocean floor slopes, glacier collapses, and meteorite collisions. In this study, two numerical analyses were conducted to examine the formation, propagation, and deformation properties of landslide tsunamis. First, LS-DYNA was adopted to simulate the formation and propagation processes of tsunamis generated by dropping rigid bodies. The generated tsunamis had smaller wave heights and wider waveforms during their propagation, and their waveforms and flow velocities resembled those of theoretical solitary waves after a certain distance. Second, after the formation of the landslide tsunami, a tsunami based on the solitary wave approximation theory was generated in a numerical wave tank (NWT) with a computational domain that considered the stability/steady phase. The comparison of two numerical analysis results over a certain distance indicated that the waveform and flow velocity were approximately equal, and the maximum wave pressures acting on the upright wall also exhibited similar distributions. Therefore, an effective numerical model such as LS-DYNA was necessary to analyze the formation and initial deformations of the landslide tsunami, while an NWT with the wave generation method based on the solitary wave approximation theory was sufficient above a certain distance.

MLCC용 유전체 소재의 연구개발 동향 (Recent Progress in Dielectric Materials for MLCC Application)

  • 서인태;강형원;한승호
    • 한국전기전자재료학회논문지
    • /
    • 제35권2호
    • /
    • pp.103-118
    • /
    • 2022
  • With the recent increase in demand for electronic devices, multi-layer ceramic capacitors (MLCCs) have become the most important core component. In particular, the next-generation MLCC with extremely high reliability is required for the 4th industrial revolution and electric vehicle applications. Therefore, it is necessary to develop dielectric ceramic materials with high dielectric properties and reliability. During the decades, electrical properties of BaTiO3 based dielectric ceramics, which have been widely used in MLCC industrial field, have been improved by microstructure and defect chemistry control. However, electrical properties of BaTiO3 have reached their limits, and new types of dielectric materials have been widely studied. Based on these backgrounds, this report presents the recent development trends of BaTiO3-based dielectric materials for the next-generation MLCCs, and suggests promising candidates to replace BaTiO3 ceramics.

Modeling of Ultrasonic Testing in Butt Joint by Ray Tracing

  • Nam, Young-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.441-447
    • /
    • 2001
  • Ultrasonic wave generation and propagation were modeled to simulate an ultrasonic test. A ray model was used for the modeling. Actual sound pressure distribution of the incident wave from an angle probe was analyzed using an ultrasonic visualization method to incorporate the actual sound pressure distribution in the model. In this method, the sound pressure was expressed by the density of rays and the reflection coefficient of ultrasonic beams. Reflection and mode conversion of rays were computed by the Snells law. Simulation programs for the problem of ultrasonic testing of a butt joint are built using this ray modeling. Simulation results for ultrasonic wave scattering from a defect and A-scan display in ultrasonic testing agreed with the actual experiment results.

  • PDF

PL을 이용한 HPHT 처리된 다이아몬드 감별에 관한 연구 (A study on the identification of HPHT diamond by the photoluminescence)

  • 김영출;김판채
    • 한국결정성장학회지
    • /
    • 제13권1호
    • /
    • pp.31-35
    • /
    • 2003
  • PL data에 의해 다이아몬드가 HPHT(고온고압)으로 처리하는 과정을 거치면서 격자 내에 불순물 원자뿐만 아니라 공공과 침입형 원자의 움직임과 감소, 소멸, 생성 등으로 일부 격자가 재배열됨이 드러났다. 특히, PL spectrum은 Type IIa 다이아몬드가 가지는 매우 작은 양의 질소 불순물도 명확히 나타났으며, 이로 인해 상당한 수의 점결함이 결정 격자 내에 분산되어 있음을 알 수 있었다.

Synthesis of the sulfide phosphors and white light generation based on InGaN chip

  • Kim, Kyung-Nam;Kim, Jae-Myung;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.679-682
    • /
    • 2004
  • $SrGa_2S_4$:Eu green phosphor and SrS:Eu red phosphor have been synthesized by co-precipitation method, respectively. Two sulfide phosphors were influenced by oxygen defect in host materials. Excitation spectra of these phosphors have high efficiency at the long wavelength region. And emission efficiency is increased under the excitation wavelength of 465nm. The combination of thiogallate green phosphor and sulfide red phosphor based on blue light InGaN chip has made it possible to emit white light.

  • PDF