• Title/Summary/Keyword: Defect generation

Search Result 213, Processing Time 0.019 seconds

Humidity Induced Defect Generation and Its Control during Organic Bottom Anti-reflective Coating in the Photo Lithography Process of Semiconductors

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.295-299
    • /
    • 2012
  • Defect generation during organic bottom anti-reflective coating (BARC) in the photo lithography process is closely related to humidity control in the BARC coating unit. Defects are related to the water component due to the humidity and act as a blocking material for the etching process, resulting in an extreme pattern bridging in the subsequent BARC etching process of the poly etch step. In this paper, the lower limit for the humidity that should be stringently controlled for to prevent defect generation during BARC coating is proposed. Various images of defects are inspected using various inspection tools utilizing optical and electron beams. The mechanism for defect generation only in the specific BARC coating step is analyzed and explained. The BARC defect-induced gate pattern bridging mechanism in the lithography process is also well explained in this paper.

A Study of Pattern Defect Data Augmentation with Image Generation Model (이미지 생성 모델을 이용한 패턴 결함 데이터 증강에 대한 연구)

  • Byungjoon Kim;Yongduek Seo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.79-84
    • /
    • 2023
  • Image generation models have been applied in various fields to overcome data sparsity, time and cost issues. However, it has limitations in generating images from regular pattern images and detecting defects in such data. In this paper, we verified the feasibility of the image generation model to generate pattern images and applied it to data augmentation for defect detection of OLED panels. The data required to train an OLED defect detection model is difficult to obtain due to the high cost of OLED panels. Therefore, even if the data set is obtained, it is necessary to define and classify various defect types. This paper introduces an OLED panel defect data acquisition system that acquires a hypothetical data set and augments the data with an image generation model. In addition, the difficulty of generating pattern images in the diffusion model is identified and a possibility is proposed, and the limitations of data augmentation and defect detection data augmentation using the image generation model are improved.

A Study of Surface Defect Initiation in Groove Rolling Using Finite Element Analysis (유한요소해석을 이용한 공형 압연에서의 표면흠 발생 연구)

  • Na, D.H.;Huh, J.W.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.333-336
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No. 3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibits the generation of surface defect.

  • PDF

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

Laser Generation of Focused Lamb Waves

  • Jhang, Kyung-Young;Kim, Hong-Joon;Kim, Hyun-Mook;Ha, Job
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.637-642
    • /
    • 2002
  • An arc-shaped line array slit has been used for the laser generation of focused Lamb waves. The spatially expanded Nd:YAG pulse laser was illuminated through the arc-shaped line array slit on the surface of a sample plate to generate the Lamb waves of the same pattern as the slit. Then the generated Lamb waves were focused at the focal point of which distance from the slit position is dependent on the curvature of slit arc. The proposed method showed better spatial resolution than the conventional linear array slit in the detection of laser machined linear defect and drill machined circular defect on aluminum plates of 2mm thickness. Using the focused waves, we could detect the linear defect and the circular defect with the improvement of spatial resolution. The method can also be combined with the scanning mechanism to get an image just like by the scanning acoustic microscope(SAM).

A Method to Simulate Frictional Heating at Defects in Ultrasonic Infrared Thermography

  • Choi, Wonjae;Choi, Manyong;Park, Jeonghak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.407-413
    • /
    • 2015
  • Ultrasonic infrared thermography is an active thermography methods. In this method, mechanical energy is introduced to a structure, it is converted into heat energy at the defects, and an infrared camera detects the heat for inspection. The heat generation mechanisms are dependent on many factors such as structure characteristics, defect type, excitation method and contact condition, which make it difficult to predict heat distribution in ultrasonic infrared thermography. In this paper, a method to simulate frictional heating, known to be one of the main heat generation mechanisms at the closed defects in metal structures, is proposed for ultrasonic infrared thermography. This method uses linear vibration analysis results without considering the contact boundary condition at the defect so that it is intuitive and simple to implement. Its advantages and disadvantages are also discussed. The simulation results show good agreement with the modal analysis and experiment result.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

A Study on the Effect of the Vibration and Particle Generation of a Spin Coater on Thin Film Coating (회전박막제조기의 진동 및 입자발생이 박막제조에 미치는 영향에 관한 연구)

  • 허진욱;권태종;정진태;한창수;안강호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.31-36
    • /
    • 2001
  • A spin coater is a machine to coat wafer or LCD display with thin film. Vibration in the spin coater may be one of main troubles in the coating process. In this paper, we focus on the difference between two spin coaters. Vibration sources are identified by experimental approach and are compared to find the difference between the two spin coaters. Also, the particle concentration is observed by laser particle counter (LPC) for the two spin coaters, when the spin coaxers are working. It is also considered whether the defect rate is proportional to the particle concentration. The result shows that particle generation in the coating process is related to excessive vibration of the spin coater shaft and the particles influence the defect rate of the thin film product.

  • PDF

A Welding Defect Inspection using an Ultrasound Excited Thermography (초음파 서모그라피를 이용한 용접 결함 검사)

  • Jo Jae-Wan;Jeong Jin-Man;Choi Yeong-Su;Jeong Seung-Ho;Jeong Hyeon-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.148-150
    • /
    • 2006
  • In this paper, the applicability of an UET(ultrasound excited thermography) for a defect detection of the welded receptacle is described. An UET(ultrasound excited thermography) is a defect-selective and fast imaging tool for damage detection. A high power ultrasound-excited vibration energy with pulse durations of 280ms is injected into the outer surface of the welded receptacle made of Al material. An ultrasound vibration energy sent into the welded receptacle propagate inside the sample until they are converted into the heat in the vicinity of the defect. The injection of the ultrasound excited vibration energy results in heat generation so that the defect is turned into a local thermal wave transmitter. Its local heat emission is monitored by the thermal infrared camera. And they are processed by the image recording system. Measurement was performed on aluminum receptacle welded by using Nd:YAG laser. The observed thermal image revealed two area of defects along the welded seam.

  • PDF