• Title/Summary/Keyword: Defect detection system

Search Result 286, Processing Time 0.03 seconds

On-line Surface Defect Detection using Spatial Filtering Method (공간필터법을 이용한 온라인 표면결함 계측)

  • Moon, Serng-Bae;Jun, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • Defects inspection of commodities are very important with those design and manufacturing process and essential to strengthen the competitiveness of those. If on-line automatic defects detection is performed without damaging to products, the production cost shall be curtailed through the reducing man-power, economical management of Q.C(Quality Control). In this paper, it is suggested three spatial filtering methods which can extract the necessary information in case of defects being on the surface of object like iron plate. In addition, the dependence of filtering characteristics on parameters such as the pitch and width of slits is analyzed and the surface defect detection system is constructed. Several experiments were carried out for determining the adequate spatial filtering method through comparing and analyzing effects of parameters like defect's size and shape, intensity of light, noise of coherent source and slit number.

Defect Detection of ‘Fuji’ Apple using NIR Imaging(I) -Optical characteristics of defects and selection of significant wavelelength- (근적외선 영상을 이용한 후지사과의 결점 검출에 관한 연구 (I) -결점의 광학적 특성 구명 및 유의파장 선정-)

  • 이수희;노상하
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.169-176
    • /
    • 2001
  • Defect of apple was depreciated the product value and causes storage disease seriously. To detect the defect of ‘Fuji’apple with machine vision system, the optical characteristics of defect should be investigated. In this research, absorbance spectra of defect were acquired by spectrophotometer in the range of visible and NIR region(400∼1,100nm) and L*a*b* color values were also acquired by colorimeter. NIR machine vision system was constructed with B&W camera, frame grabber, 16 tungsten-halogen lamps, variable focal length lens and NIR bandpass filter which was mounted to lens outward. Average gray values of defect at 15 NIR wavelength were acquired and the significant NIR wavelength was selected by comparing Mahalanobis distance between sound and defective apple. As the result of Mahalanobis distance analysis, the significant wavelength to discriminate the defectives in ‘Fuji’apple were found to be 720nm for scab and 970nm for bruise and cuts and 920nm was also effective regardless of defective types.

  • PDF

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

Wavelet Analysis to Real-Time Fabric Defects Detection in Weaving processes

  • Kim, Sung-Shin;Bae, Hyeon;Jung, Jae-Ryong;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • This paper introduces a vision-based on-line fabric inspection methodology of woven textile fabrics. Current procedure for determination of fabric defects in the textile industry is performed by human in the off-line stage. The advantage of the on-line inspection system is not only defect detection and identification, but also 벼ality improvement by a feedback control loop to adjust set-points. The proposed inspection system consists of hardware and software components. The hardware components consist of CCD array cameras, a frame grabber and appropriate illumination. The software routines capitalize upon vertical and horizontal scanning algorithms characteristic of a particular deflect. The signal to noise ratio (SNR) calculation based on the results of the wavelet transform is performed to measure any deflects. The defect declaration is carried out employing SNR and scanning methods. Test results from different types of defect and different style of fabric demonstrate the effectiveness of the proposed inspection system.

A Study about Detection of Defects in the Nuclear Piping Loop System Using Cooling Lock-in Infrared Thermography (원전 배관 루프시스템의 냉각 위상잠금 적외선열화상을 이용한 결함 검출에 관한 연구)

  • Kim, Sang-Chae;Kang, Sung-Hoon;Yun, Na-Yeon;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.321-331
    • /
    • 2015
  • A study on the application of cooling defect detection was performed on the basis of a preceding study on the heated defect detection in nuclear piping loop system, using lock-in infrared thermography. A loop system with piping defects was made by varying the wall-thinning length, the circumference orientation angle, and the wall-thinning depth. The test was performed using an IR camera and a cooling device. Distance between the cooling device and the target loop system was fixed at 2 m. For analyzing experimental results, the temperature distribution data for cooling, and phase data were obtained. Through the analysis of this data, the defect length was measured. The reliability of the measurements for cooling defect conditions was shown to be higher in the lock-in infrared thermography data than the infrared thermography data.

COF Defect Detection and Classification System Based on Reference Image (참조영상 기반의 COF 결함 검출 및 분류 시스템)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1899-1907
    • /
    • 2013
  • This paper presents an efficient defect detection and classification system based on reference image for COF (Chip-on-Film) which encounters fatal defects after ultra fine pattern fabrication. These defects include typical ones such as open, mouse bite (near open), hard short and soft short. In order to detect these defects, conventionally it needs visual examination or electric circuits. However, these methods requires huge amount of time and money. In this paper, based on reference image, the proposed system detects fatal defect and efficiently classifies it to one of 4 types. The proposed system includes the preprocessing of the test image, the extraction of ROI, the analysis of local binary pattern and classification. Through simulations with lots of sample images, it is shown that the proposed system is very efficient in reducing huge amount of time and money for detecting the defects of ultra fine pattern COF.

A Defect Prevention Model based on SW-FMEA (SW-FMEA 기반의 결함 예방 모델)

  • Kim Hyo-Young;Han Hyuk-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.7
    • /
    • pp.605-614
    • /
    • 2006
  • The success of a software development project can be determined by the use of QCD. And as a software's size and complexity increase, the importance of early quality assurance rises. Therefore, more effort should be given to prevention, as opposed to correction. In order to provide a framework for the prevention of defects, defect detection activities such as peer review and testing, along with analysis of previous defects, is required. This entails a systematization and use of quality data from previous development efforts. FMEA, which is utilized for system safety assurance, can be applied as a means of software defect prevention. SW-FMEA (Software Failure Mode Effect Analysis) attempts to prevent defects by predicting likely defects. Presently, it has been applied to requirement analysis and design. SW-FMEA utilizes measured data from development activities, and can be used for defect prevention on both the development and management sides, for example, in planning, analysis, design, peer reviews, testing, risk management, and so forth. This research discusses about related methodology and proposes defect prevention model based on SW-FMEA. Proposed model is extended SW-FMEA that focuses on system analysis and design. The model not only supports verification and validation effectively, but is useful for reducing defect detection.

Implementation of Automatic Detection System for CCFL's Defects based on Combined Lighting (조합조명 기반 CCFL 불량판별 자동화 시스템 구현)

  • Moon, Chang-Bae;Ahn, Young-Hoon;Lee, Hae-Yeoun;Kim, Byeong-Man;Oh, Duk-Whan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.69-81
    • /
    • 2010
  • A Cold Cathode Fluorescent Lamp(CCFL) is used as a LCD Monitor's backlight widely. The most common way to check CCFL's defects is an examination with the naked eye. This naked eye examination can cause an examination inconsistency and an industrial disaster. To examine CCFL defects, a shooting equipment and a defect detection algorithm are necessary. This paper shows the shooting environments for checking CCFL and presents some CCFL defect detection algorithms. As a result of experiments, our implementations showed 98.32% of successful defect detection of CCFL.

Self-Reference PCSR-G Method for Detecting Defect of Flat Panel Display (평판 디스플레이 결함 검출을 위한 자기 참조 PCSR-G 기법)

  • Kim, Jin-Hyung;Lee, Tae-Young;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.312-322
    • /
    • 2015
  • In this paper a new defect detection method for flat panel display that does not require any separately prepared reference images and shows robustness against problems with regard to pixel tolerance and nonuniform illumination condition is proposed. In order to perform defect detection under any magnification value of camera, the proposed method automatically obtains the value of pattern interval through an image analysis. Using the information for pattern interval, an advanced PCSR-G method presented in this paper utilizes neighboring patterns as its reference images instead of utilizing any separately prepared reference images. Also this paper proposes a scheme to improve the performance of the conventional PCSR-G method by extracting and applying additional information for pixel tolerance and intensity distribution considering the value of pattern interval. Simulation results show that the performance of the proposed method utilizing pixel tolerance and intensity distribution is superior to that of the conventional method. Also, it is proved that the proposed method that is implemented using parallel technique based on GPGPU can be applied to real system.

Linear System Depth Detection using Retro Reflector for Automatic Vision Inspection System (자동 표면 결함검사 시스템에서 Retro 광학계를 이용한 3D 깊이정보 측정방법)

  • Joo, Young Bok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.77-80
    • /
    • 2022
  • Automatic Vision Inspection (AVI) systems automatically detect defect features and measure their sizes via camera vision. It has been populated because of the accuracy and consistency in terms of QC (Quality Control) of inspection processes. Also, it is important to predict the performance of an AVI to meet customer's specification in advance. AVI are usually suffered from false negative and positives. It can be overcome by providing extra information such as 3D depth information. Stereo vision processing has been popular for depth extraction of the 3D images from 2D images. However, stereo vision methods usually take long time to process. In this paper, retro optical system using reflectors is proposed and experimented to overcome the problem. The optical system extracts the depth without special SW processes. The vision sensor and optical components such as illumination and depth detecting module are integrated as a unit. The depth information can be extracted on real-time basis and utilized and can improve the performance of an AVI system.