• Title/Summary/Keyword: Defect Investigation

Search Result 230, Processing Time 0.029 seconds

Influence of Artificial Defect on Fatigue Limit in Austempered Ductile Iron (오스템퍼링처리한 구상흑연주철의 피로한도에 미치는 인공결함의 영향)

  • Kim, Min-Geon;Kim, Jin-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1922-1928
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the influence of artificial defects on fatigue limit in annealed and austempered ductile iron. Obtained main results are as follows : (1) Artificial defect(micro hole type, dia.<0.4 mm) on specimen surface did not bring about a obvious reduction of fatigue limit in austempered ductile iron(ADI) as compared with annealed ductile iron. (2) According to the investigation of $\sqrt{area}_c$ which is the critical defect size to crack initiation at artificial defect, $\sqrt{area}_c$ of ADI is larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. (3) One of the reasons for the low rate of crack initiation from artificial defect in ADI is that the resistance of matrix to crack initiation is higher than that of annealed ductile iron. (4) In case that the $\sqrt{area}$ of artificial defect and graphite nodule is the same, the rate of crack initiation from graphite nodule is higher than that from artificial defect. This reason is that the serious ruggedness around graphite nodule is formed by austempering treatment.

A Study on the Governing Factor of Fatigue Limit in Austempered Ductile Iron (오스템퍼링 구상흑연주철의 피로한도 지배인자에 관한 연구)

  • 정회원;김진학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.221-229
    • /
    • 1999
  • We examined the governing factors of fatigue limit in annealed and austempered ductile iron specimens machined micro hole(dia.<0.4mm) in rotary bending fatigue test. Also, the quantitative relationship between fatigue limit and maximum defect size in specimens was investigated. Artificial defect(micro-pit type, dia.<0.4mm) on specimen surface did not bring about an obvious reduction of fatigue limit in austempered ductile iton(ADI) as compared with annealed ductile iron. According to the investigation of ${\sqrt{area}}_c$ which is the critical defect size to crack initiation at artificial defect, ${\sqrt{area}}_c$ of ADI was larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. Maximum defect size is one of the important parameters to predict fatigue limit. And, the quantitative relationship, between the fatigue limit ${\sigma}_{\omega}$ and the maximum defect size ${\sqrt{area}}_{max}$ can be expressed to ${\sigma}_{\omega}^n{\cdot}{\sqrt{area}}_{max}=C_2$ where, $C_2$ are constant. Moreover, it is possible to explain the difference in fatigue limit between, austempered and annealed ductile iron by introducing the parameter ${\delta}(=N_{sg}/N_{total})$in a plain spectimen.

  • PDF

Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Wave: Simulation

  • Jeong, Hyun-Jo;Lee, Jung-Sik;Bae, Sung-Min;Lee, Hyun-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.261-270
    • /
    • 2010
  • This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional side bands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure.

Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

  • Liu, Yonggang;Cui, Lei
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.125-129
    • /
    • 2014
  • Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area.

Partial Atrioventricular Canal Defect in a Maltese Dog

  • Lee, Seung-Gon;Nam, So-Jeong;Moon, Hyeong-Sun;Hyun, Chang-Baig
    • Journal of Veterinary Clinics
    • /
    • v.25 no.3
    • /
    • pp.195-199
    • /
    • 2008
  • A 2-year-old female Maltese dog was referred with primary complaints of exercise intolerance and abnormal heart sound. Clinical and diagnostic investigation revealed split S2 and S4 gallop in the cardiac auscultation, tall P wave and left anterior fascicular block in the electrocardiogram, left atrial enlargement on the thoracic radiography, ostium primum atrial septal defect and cleft of the anterior leaflet of the mitral valve on the echocardiography. Based on those findings, the dog was diagnosed as the partial atrioventricular canal defect. Since the dog showed mild exercise intolerance, enalapril and furosemide were prescribed.

Coating defect survey of underground buried pipelines (지하매설배관의 피복손상부 탐측에 관한 연구)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Lee, Hyun-Goo;Kim, Dae-Kyeong;Ha, Yoon-Cheol;Park, Kyung-Wha
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.61-63
    • /
    • 2005
  • In present, most of underground metallic structures, especially gas pipeline, have adopted in order to protect against a corrosion. If a coating defect is be on the surface of gas pipeline, the pitting corrosion is occur normally. So, in the corrosion field, investigation of coating defect is very important activity. In this paper, DCVG(Direct Current Voltage Gradient) method which is can detect a coating defect of gas pipeline is introduced. And also, the assesment of coating defect position according to the position of temporary anode of ICCP(Impresed Current Cathodic Protection) system is presented.

  • PDF

Investigation of the Finite Planar Frequency Selective Surface with Defect Patterns

  • Hong, Ic-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1360-1364
    • /
    • 2014
  • In this paper, RCS characteristics on defect pattern of crossed dipole slot FSS having a finite size have been analyzed. To analyze RCS, we applied the electric field integral equation analysis which applies BiCGSTab algorithm with iterative method and uses RWG basis function. To verify the validity of this paper, RCS of PEC sphere has been compared to the theoretical results and FSSs with defect patterns are fabricated and measured. As defect patterns in FSS, missing one column, missing some elements, and discontinuity in surfaces are simulated and compared with the measurement results. Resonant frequency shifts in pass band and changes in bandwidth are observed. From the results, precisely predicting and designing frequency characteristics over defect patterns are essential when applying FSS structures such as FSS radomes.

Durability Evaluation and Defect Pattern Analysis in Railway Bridge Through Field Investigation (현장조사를 통한 철도 고가교 구조물의 내구성 평가 및 결함 패턴 분석)

  • Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Because of the defect in design, damage in using period, and deterioration in long term exposure to severe environmental condition, degradation of performance in RC (Reinforced Concrete) structures has occurred. This paper contains durability performance evaluation in railway bridges which covers eight districts through field investigation. For the target structures, durability performance is evaluated and the critical problems in use are derived. Additionally, service lifes for the deteriorated structures are evaluated through Durability-Environment index method based on the results from field investigation, and the results are compared with those from the condition assuming the structures without defect, damage, and deterioration. The target structures which consist of RC T girder, PSC girder, RC box, and Rahmen are investigated and the critical damage patterns are derived. They are evaluated to be cracks in PSC girder end, flexural cracks in PSC girder, crack around EPT anchor, and flexural cracks in RC T girder and RC box. The reasons for the critical patterns are also investigated. This study can be utilized for the repair planning considering the different district and the structure types.

Improving Device Efficiency for n-i-p Type Solar Cells with Various Optimized Active Layers

  • Iftiquar, Sk Md;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.70-73
    • /
    • 2017
  • We investigated n-i-p type single junction hydrogenated amorphous silicon oxide solar cells. These cells were without front surface texture or back reflector. Maximum power point efficiency of these cells showed that an optimized device structure is needed to get the best device output. This depends on the thickness and defect density ($N_d$) of the active layer. A typical 10% photovoltaic device conversion efficiency was obtained with a $N_d=8.86{\times}10^{15}cm^{-3}$ defect density and 630 nm active layer thickness. Our investigation suggests a correlation between defect density and active layer thickness to device efficiency. We found that amorphous silicon solar cell efficiency can be improved to well above 10%.

Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile (자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Dong-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.