• Title/Summary/Keyword: Defect Density

Search Result 463, Processing Time 0.025 seconds

Copper Filling to TSV (Through-Si-Via) and Simplification of Bumping Process (비아 홀(TSV)의 Cu 충전 및 범핑 공정 단순화)

  • Hong, Sung-Jun;Hong, Sung-Chul;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.79-84
    • /
    • 2010
  • Formation of TSV (Through-Si-Via) with an Au seed layer and Cu filling to the via, simplification of bumping process for three dimensional stacking of Si dice were investigated. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process using $SF_6$ and $C_4F_8$ plasmas alternately. The vias were 40 ${\mu}m$ in diameter, 80 ${\mu}m$ in depth, and were produced by etching for 1.92 ks. On the via side wall, a dielectric layer of $SiO_2$ was formed by thermal oxidation, and an adhesion layer of Ti, and a seed layer of Au were applied by sputtering. Electroplating with pulsed DC was applied to fill the via holes with Cu. The plating condition was at a forward pulse current density of 1000 mA/$dm^2$ for 5 s and a reverse pulse current density of 190 mA/$dm^2$ for 25 s. By using these parameters, sound Cu filling was obtained in the vias with a total plating time of 57.6 ks. Sn bumping was performed on the Cu plugs without lithography process. The bumps were produced on the Si die successfully by the simplified process without serious defect.

Dry Magnetic Particle Inspection of Ingot Cast Billets (강편 빌레트의 건식 자분 탐상)

  • Kim, Goo-Hwa;Lim, Zhong-Soo;Lee, Eui-Wan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.162-173
    • /
    • 1996
  • Dry magnetic particle inspection(MPI) was performed to detect the surface defects of steel ingot cast billets. Magnetic properties of several materials were characterized by the measurement of the B-H hysteresis curve. The inspection results were evaluated in terms of the magnetizing current, temperature, and the amount of magnetic particles applied to billets. Magnetic flux leakage near the defect site of interest was measured and compared with the results of calculation by the finite element method in the case of direct magnetizing current. Direct and alternating magnetizing currents for materials were deduced by the comparison of the inspections. Results of the magnetic particle inspection by direct magnetizing current were compared with those of finite element method calculations, which were verified by measuring magnetic leakage flux above the surface and the surface defects of the material. For square rods, due to the geometrical effect, the magnetic flux density at the edges along the length of the rods was about 30% of that at the center of rod face for a sufficiently large direct magnetizing current, while it was about 70% for an alternating magnetizing current. Thus, an alternating magnetizing current generates rather uniform magnetic flux density over the rods, except for the region on the face across about 10 mm from the edge. The attraction of the magnetic particle by the magnetic leakage field was nearly independent of the surface temperature of the billets up to $150^{\circ}C$. However, the temperature should have been limited below $60^{\circ}C$ for an effective fixing of gathered magnetic particles to the billet surface using methylene chloride. We also found that the amount of applied magnetic particles tremendously affected the detection capability.

  • PDF

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

MAXILLARY FLOATING TEETH IN A CHIARI MALFORMATION PATIENT (Chiari malformation 환아에서 상악 구치부의 부유치)

  • Shin, Eun-Young;Choi, Byung-Jai;Lee, Jae-Ho;Son, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.649-653
    • /
    • 2001
  • The Chiari malformation is a deformation within the central nervous system which the lower brain stem and the cerebellum migrate into the foramen magnum causing herniation. In 1891, Arnold Chiari classified such symptoms into 3 categories. This case report is of a 8-year-old female with the complaint of a slight facial swelling and pain on the upper right molar during tooth brushing since 10 days before. Clinical examination showed gingival pocket formation on distal of the upper right first molar with pain and mobility of the tooth. Radiographic examination showed generalized low bone density in the upper molar area, and especially no bone support above the upper right and left first molars were noted. With a temporary diagnosis of Early-onset periodontitis, consultations with medical doctors for the possibility of an underlying systemic disease were made during periodontal treatment. 3D CT was taken with after a final diagnosis of Chiari malformation. Generalized thinning and defect of the cranial bone was noted and the foramen magnum was slightly enlarged. The occipital and maxillary bone was low in density, and the alveolar bone of maxillary posterior teeth was especially almost non-existing causing the upper right and left first molar to be floating. For this, the patient went under consultation with the department of neurosurgery and is still under observation. Periodontitis in childreren is very rare. When symptoms of periodontitis appear in a child, due to the possibility of an underlying systemic disease such as leukemia, histiocytosis X, and hypophosphatasia, proper examinations should be carried out so that the primary factor the symptoms can be treated.

  • PDF

Water Vapor Permeation Properties of Al2O3/TiO2 Passivation Layer Deposited by Atomic Layer Deposition (원자층 증착법을 이용한 Al2O3/TiO2 보호막의 수분 보호 특성)

  • Kwon, Tae-Suk;Moon, Yeon-Keon;Kim, Woong-Sun;Moon, Dae-Yong;Kim, Kyung-Taek;Shin, Sae-Young;Han, Dong-Suk;Park, Jae-Gun;Park, Jong-Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.495-500
    • /
    • 2010
  • In this study, $Al_2O_3$ and $TiO_2$ films was deposited on to PES (poly(ethersulfon) substrate by using atomic layer deposition as functions of deposition temperature and plasma power. The density and carbon contents of $Al_2O_3$ and $TiO_2$ films was changed by varying process conditions. High density thin films was achieved through optimizing the process conditions. Buffer layer was deposited prior to the processing of upper thin films to avoid PES surface destruction during the high power plasma process and to enhances the tortuous path for water vapor permeation for the defect decoupling effect. The water vapor transmission rate by using MOCON test was investigated to analyze the effect. Water vaper permeation properties was improved by using the inorganic multi-layer passivation layer and activation energy of the water vapor permeation was increased.

The Effects of Calcium-Phosphate Coated Xenogenic Bone and Type I Collagen for Bone Regeneration on the Calvarial Defects in Rabbits (Ca-P 박막 이종골과 제 1형 교원질이 토끼 두개골 결손부의 골재생에 미치는 영향)

  • Kim, Chang-Han;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.223-241
    • /
    • 2004
  • The purpose of this present study evaluated the osseous response around Ca-P coated xenogenic bone and compared osteogenic potential of Ca-P coated xenogenic bone to that of combination with type I collagen derived from bovine tendon as a biocompatible binder to prevent migration of bone particle on the repair of calvarial defects in rabbits. To study the effects of Ca-P coated xenogenic bone and collagen on bone healing, four 5-mm-diameter skull defect were made in calvaria with trephine filled with an autogenous bone chip or Ca-P coated xenogenic bone or Ca-P coated xenogenic bone and type I collagen (1:1 mixture by volume) or left empty. The defects were evaluated histologically at 1, 2, 4 and 8 weeks following implantation. Ca-P coated xenogenic bone at the calvarial defects of rabbits showed osteoconductivity at the margin of defect in the early stage of bony healing, but no direct contact with new bone was observed. With time passed by, it was resorbed slowly and showed consistent inflammatory reaction. An additional use of type I collagen derived from bovine tendon improved clinical handling, but no new bone formation was observed histologically. Above all, autogenous bone graft showed most prominent healing in quantity and density of new bone formation. According to this study, the use of Ca-P coated xenogenic bone alone and combination with type I collagen did not showed effective healing in quantity and density of new bone formation.

The Bone Regenerative Effects of Chitosan on the Calvarial Critical Size Defectin Sprague Dawley Rats (백서 두개골 결손부에서 키토산의 골조직 재생 유도 효과)

  • Jung, Ui-Won;Suh, Jong-Jin;Choi, Seong-Ho;Choi, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.851-870
    • /
    • 2000
  • The major goals of periodontal therapy is the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. There have been increasing interest on the chitosan made by chitin. Chitin is second only to cellulose as the most abundant natural biopolymer. It is a structural component of the exoskeleton of invertebrates(e.g., shrimp, crabs, lobsters), of the cell wall of fungi, and of the cuticle of insects. Chitosan is a derivative of chitin made by deacetylation of side chains. Many experiments using chitosan in various animal models have proven its beneficial effects. The aim of this study is to evaluate the osteogenesis of chitosan on the calvarial critical size defect in Sprague Dawley rats. An 8 mm surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into two groups: Untreated control group versus experimental group with 50mg of soluble chitosan gel. The animals were sacrificed at 2, 4 and 8 weeks after surgical procedure. The specimens were examined by histologic, histomorphometric and radiodensitometric analyses. The results are as follows: 1. The length of newly formed bone in the defects was $102.91{\pm}25.46{\mu}m$, $219.46{\pm}97.81{\mu}m$ at the 2 weeks, $130.95{\pm}39.24{\mu}m$, $212.39{\pm}89.22{\mu}m$ at the 4 weeks, $181.53{\pm}76.35{\mu}m$ and $257.12{\pm}51.22{\mu}m$ at the 8 weeks in the control group and experimental group respectively. At all periods, the means of experimental group was greater than those of control group. But, there was no statistically significant difference between the two groups. 2. The area of newly formed bone in the defects was $2962.06{\pm}1284.48{\mu}m^2$, $5194.88{\pm}1247.88{\mu}m^2$ at the 2 weeks, $5103.25{\pm}1375.88{\mu}m^2$, $7751.43{\pm}2228.20{\mu}m^2$ at the 4 weeks and $8046.20{\pm}818.99{\mu}m^2$, $15578.57{\pm}5606.55{\mu}m^2$ at the 8 weeks in the control group and experimental group respectively. At all periods, the means of experimental group was greater than those of control group. The experimental group showed statistically significant difference to the control group at the 2 and 8 weeks. 3. The density of newly formed bone in the defects was $14.26{\pm}6.33%$, $27.91{\pm}6.65%$ at the 2 weeks, $20.06{\pm}9.07%$, $27.86{\pm}8.20%$ at the 4 weeks and $22.99{\pm}3.76%$, $32.17{\pm}6.38%$ at the 8 weeks in the control group and experimental group respectively. At all periods, the means of experimental group was greater than those of control group. The experimental group showed statistically significant difference to the control group at the 2 and 8 weeks. These results suggest that the use of chitosan on the calvarial defects in rats has significant effect on the regeneration of bone tissue in itself

  • PDF

A Study for the Evaluation of Container Modules; The Technology of Korean Container Tree Production Model (한국형 컨테이너 조경수 생산기술로서 컨테이너 모듈의 성능 평가)

  • Jung, Yong-Jo;Lim, Byung-Eul;Oh, Jang-keun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.5
    • /
    • pp.59-67
    • /
    • 2016
  • In landscape design by public institutions, although the costs and species of landscape trees stipulated by the Korean Public Procurement Service(PPS) are generally adhered to, the PPS regulations about planting trees with well-developed rootlets are almost entirely neglected. This study aimed to evaluate the performance of buried container modules, which are a new technology and product in landscape production that is able to reduce the defect rate while complying with regulations. To this end, this study measured rootlet density, rootlet development length, rootlet survival rate on excavation, and impairments of tree growth for 3 months after root pruning, and compared these variables for the container modules with those for trees that underwent root pruning in bare ground, and those that were cultivated in a container above ground. The results were as follows: First, the rootlet density was 88% for the trees in container modules, which was very high. Trees that underwent standard root pruning in bare ground had a somewhat lower density of 64%. Meanwhile, the trees that were cultivated in pots above ground died, invalidating measurement. Second, in terms of rootlet development and rootlet survival rate, the trees in container modules showed a mean length of 10.4cm, and 100% survival rate, indicating that there was no rootlet damage caused by excavation. For the trees that only underwent root pruning in bare ground, the mean length was 25.6cm and the rootlet survival rate was only half that of the trees in container modules, at 56%, demonstrating considerable damage. Rootlet development did not occur at all in the trees grown in pots. Third, the trees in container modules and those that underwent root pruning in bare ground did not show any deaths during the root pruning process, or any impairments such as stunted leaf growth. Conversely, the trees grown in pots nearly all died, and severe impairments of tree growth were observed. As shown by the results above, when we evaluated the performance of buried container modules, they showed the most outstanding performance of the three models tested in this study. The container modules prevent defects by stimulating early rooting in environments that with poor conditions for growth, or in trees that are not suited to the summer environment Therefore, it is expected that they would be an optimal means by which to enable compliance with rules such as the regulation presented by the PPS.

The Effect of Cultured Perichondrial Cell Sheet Covered Highly Active Engineered Cartilage: in vivo Comparative Assessment (배양연골막이 피복된 고효능 인공연골의 생체내 효과)

  • Park, Se-Il;Moon, Young-Mi;Jeong, Jae-Ho;Jang, Kwang-Ho;Ahn, Myun-Hwan
    • Journal of Veterinary Clinics
    • /
    • v.28 no.5
    • /
    • pp.486-496
    • /
    • 2011
  • A special mesenchymal tissue layer called perichondrium has a chondrogenic capacity and is a candidate tissue for engineering of cartilage. To overcome limited potential for chondrocyte proliferation and re-absorption, we studied a method of cartilage tissue engineering comprising chondrocyte-hydrogel pluronic complex (CPC) and cultured perichondrial cell sheet (cPCs) which entirely cover CPC. For effective cartilage regeneration, cell-sheet engineering technique of high-density culture was used for fabrication of cPCs. Hydrogel pluronic as a biomimetic cell carrier used for stable and maintains the chondrocytes. The human cPCs was cultured as a single layer and entirely covered CPC. The tissue engineered constructs were implanted into the dorsal subcutaneous tissue pocket on nude mice (n = 6). CPC without cPCs were used as a controls (N = 6). Engineered cartilage specimens were harvested at 12 weeks after implantation and evaluated with gross morphology and histological examination. Biological analysis was also performed for glycosaminoglycan (GAG) and type II collagen. Indeed, we performed additional in vivo studies of cartilage regeneration using canine large fullthickness chondrial defect model. The dogs were allocated to the experimental groups as treated chondrocyte sheets with perichondrial cell sheet group (n = 4), and chondrocyte sheets only group (n = 4). The histological and biochemical studies performed 12 weeks later as same manners as nude mouse but additional immunofluorescence study. Grossly, the size of cartilage specimen of cPCs covered group was larger than that of the control. On histological examination, the specimen of cPCs covered group showed typical characteristics of cartilage tissue. The contents of GAG and type II collagen were higher in cPCs covered group than that of the control. These studies demonstrated the potential of such CPC/cPCs constructs to support chondrogenesis in vivo. In conclusion, the method of cartilage tissue engineering using cPCs supposed to be an effective method with higher cartilage tissue gain. We suggest a new method of cartilage tissue engineering using cultured perichondrial cell sheet as a promising strategy for cartilage tissue reconstruction.