본 논문에서는, H.263 부호화기에 있어, 비제한 움직임 벡터(Unrestricted Motion Vector, UMV)모드와 기본 예측 모드(Default Prediction Mode)의 동적 선택을 위한 방법을 제안한다. 여기서, 움직임 보상된 영상과의 오차와 움직임 벡터의 크기를 이용하였다. 제안된 전략에서, UMV 모드는 모션 벡터의 크기와 움직임 보상된 영상의 오차에 따라 동적으로 적용된다. 이러한 전략은 UMV나 DPM을 고정적으로 전체 영상에 적용한 결과에 비해 화질 면에서 개선할 점을 제공한다. UMV 모드가 고정적으로 적용된 경우에 비해 움직임 추정 시 탐색 점의 수를 크게 줄일 수 있다. 제안된 방법은 카메라의 이동을 갖는 보다 긴 영상 신호에 대해 보다 효과적으로 적용될 수 있다.
This study examined the insolvency of debtors using multiple-indicator approaches and compared the outcomes across income levels with the 2016 'Household Financial and Welfare Survey'. This study used (1) the total debt to total assets ratio (DTA), (2) the total debt service ratio (DSR), and (3) the Household Default Risk Index (HDRI) recently developed by the Bank of Korea. Households in the lowest income quintile were more likely to be insolvent than any other income group. Demographics, such as age and gender of the household head, and most of the financial variables significantly increased the likelihood of insolvency based on the DTA. The number of household members and job status increased the likelihood of insolvency based on the DSR. Also, age, gender of the household head, and most of the financial variables increased the likelihood of household insolvency based on the HDRI after controlling for other demographics and financial variables.
This study examined the insolvency likelihood of young debtors from the 2018 Household Financial and Welfare Survey. This study used the Household Default Risk Index (HDRI), which considers the ratio of total debt to total assets (DTA), and a total debt service ratio (DSR) to examine the insolvency level of debtors. The descriptive analyses showed no difference in frequency of households with a high probability of insolvency between those less than 35 years of age and those over 35 years of age. However, the median HDRI value for those less than 35 years of age was higher than those over 35 years of age. The multivariate analyses indicated that educational expenses for young Korean debtors was a factor that increased their probability of insolvency, while income was the only variable that decreased their insolvency likelihood.
In this paper, we proposed a dynamic selection scheme of advnaced prediction mode(DAPM), which reduces computational cost and improves coding efficiency. We can select the mode between default prediction mode (DPM) and advanced prediction mode (APM) according to motion componenets in a frame dynamically. For this purpose, we defined error distribution of motion estimation (EDME) as sum of absolute difference(SAD) for each searching points. This distribution region is divided to four subregions. We calculate minimum values in each subregions and then, we determine whether block motion estimation is performed or not depending on the results. As a result, we reduced computational complexity to 30% without degradation of image quality compared to fixed APM(FAPM) by selecting DPM for linear movement.
Journal of information and communication convergence engineering
/
제19권4호
/
pp.228-233
/
2021
In this study, we analyze the credit information (loan, delinquency information, etc.) of individual business owners to generate voluminous training data to establish a bankruptcy prediction model through a partial synthetic training technique. Furthermore, we evaluate the prediction performance of the newly generated data compared to the actual data. When using conditional tabular generative adversarial networks (CTGAN)-based training data generated by the experimental results (a logistic regression task), the recall is improved by 1.75 times compared to that obtained using the actual data. The probability that both the actual and generated data are sampled over an identical distribution is verified to be much higher than 80%. Providing artificial intelligence training data through data synthesis in the fields of credit rating and default risk prediction of individual businesses, which have not been relatively active in research, promotes further in-depth research efforts focused on utilizing such methods.
전자상거래에서 최근 대부분의 개인화된 추천 시스템들은 협력적 필터링 기술을 적용하고 있다. 이 방법은 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 이때 일반적으로 피어슨 상관계수를 많이 사용한다. 그러나 이 방법은 두 사용자가 공통으로 선호도를 평가한 아이템들이 있을 때만 상관관계를 계산할 수 있으므로 예측의 정확도는 떨어진다. 사용자 유사도 가중치는 사용자의 성향에 맞는 아이템을 예측하는 경우 뿐만 아니라 개인화된 추천 시스템의 성능에 영향을 미칠 수 있다. 본 논문에서는 정보검색 분야의 벡터 유사도, 엔트로피, 역 사용자 빈도, 기본 선호도 평가를 적용하여 유사도 가중치 공식에 대해서 살펴보고, 추천 시스템의 예측 정확도 향상에 대해서도 실험을 통해 확인해 보았다. 실험 결과는 엔트로피를 이용한 유사도 가중치에 기본 선호도 평가를 결합하는 방법이 가장 성능이 우수함을 알 수 있다.
하수처리 공정모델링 소프트웨어인 EQPS(Effluent Quality Prediction System, Dynamita, France)를 적용하여 A하수처리시설 생물반응조 설계의 적합성을 분석하였다. A하수처리장은 친수용수 수준의 목표수질을 준수하기 위하여 이차침전지 유출수 설계농도를 총질소와 총인, 각 10 mg/L, 1.8 mg/L로 설정하여 설계하였다. 4-Stage BNR 공정인 반응조의 체류시간은 총 9.6시간으로 전무산소조 0.5, 혐기조 1.0, 무산소조 2.9, 호기조 5.2시간이었다. 동절기 공정모델링 결과 친수용수 수준의 목표수질을 만족하기 위하여 혐기조의 체류시간을 0.2시간 늘렸고 당초 설계조건이던 외부탄소원 비상시 주입을 상시적으로 주입해야 하는 것으로 조사되었다. 모델링 결과의 왜곡을 배제하기 위하여 소프트웨어 제조사가 제시한 one step nitrification denitrification 모델의 Default 계수를 사용하였다. 공정모델링은 대체적으로 최적의 상태를 제시하기 때문에 생물반응조 여유율을 고려하면 4-Stage BNR의 체류시간은 9.8시간보다 증가시켜야 한다. 하수처리장 설계단계에서 공정 모델링의 정확한 사용은 하수처리장 건설 후 처리성능과 효율의 안정성을 담보할 수 있는 방법이므로 설계단계에서 철저한 평가가 필요하다.
Tree-based algorithms have been the dominant methods used build a prediction model for tabular data. This also includes personal credit data. However, they are limited to compatibility with categorical and numerical data only, and also do not capture information of the relationship between other features. In this work, we proposed an ensemble model using the Transformer architecture that includes text features and harness the self-attention mechanism to tackle the feature relationships limitation. We describe a text formatter module, that converts the original tabular data into sentence data that is fed into FinBERT along with other text features. Furthermore, we employed FT-Transformer that train with the original tabular data. We evaluate this multi-modal approach with two popular tree-based algorithms known as, Random Forest and Extreme Gradient Boosting, XGBoost and TabTransformer. Our proposed method shows superior Default Recall, F1 score and AUC results across two public data sets. Our results are significant for financial institutions to reduce the risk of financial loss regarding defaulters.
Cine-Hangeul is a program that can predict the running time of a movie based on the screenplay before production. This paper seeks to verify the prediction reporting function of Cine-Hangeul, which is the standard Korean screenplay format. Moreover, this paper presents a method to increase the accuracy of the Cine-Hangeul reporting function. The objective of this paper is to offer a correction method based on scientific evidence because the current Cine-Hangeul reporting function has many errors. The verification process for five scenarios and movies confirmed that the default setting value of Cine- Hangeul's screening time prediction reporting was many errors. Cine-Hangeul analyzes the amount of textual information to predict the time of the scene and the time of the dialogue and helps predict the total time of the movie. Therefore, if a certain amount of text information is not available, the accuracy is unreliable. The current Cine-Hangeul prediction report confirms that the efficiency is high when the scenario volume is about 90 to 100 pages. As a result, prediction of screening time by Cine-Hangeul, a Korean scenario standard format program, confirmed the verification that it could secure the same level of reliability as the actual screening time by correcting the reporting settings. This verification also affirms that when applying about 50 percent of the basic set of screening time reporting, it is almost identical to the screening time.
주가자료를 활용한 부도예측모형인 KMV EDF 모형을 기반으로 일별주가자료와 기업재무자료를 이용하여, 모형에 필요한 적절한 모수를 찾고 모델링을 하였으며, 적절성을 검증했다. 그리고, 기존의 연구에 따라 월평균주가자료를 이용한 경우, 모형에 왜곡이 가해질 수 있다는 점을 지적했다. 또한, 민감도 분석을 통하여 본 모형의 부도예측값에 미치는 주요한 검증하고, 실용적으로 사용할 수 있는 간단한 민감도분석 Tool을 설계하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.