• Title/Summary/Keyword: DeepLab

Search Result 188, Processing Time 0.028 seconds

Ground Investigation and Characterization for Deep Tunnel Design (대심도 암반의 터널 설계를 위한 지반 조사와 특성화)

  • Yoon, Woon-Sang;Choi, Jae-Won;Park, Jeong-Hoon;Song, Kook-Hwan;Kim, Young-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.584-590
    • /
    • 2009
  • One of the critical design problems involved in deep tunnelling in brittle rock, is the creation of surface spalling damage and breakouts. If weak fault zone is developed in deep tunnel, squeezing problem is added to the problems. According to the results of ground investigation in the study area, hard granitic rockmass and distinguished high angle fault zone are distributed on the tunnel level over 400m depth. To analyse the probability of brittle failure and squeezing, ground characterization with special lab. and field test were carried out. By the results, probability of brittle failures like spalling and rock burst is very low. But squeezing may be probable, if weak fault zone observed surface and drill core is extended to designed tunnel level.

  • PDF

Implementation of Image Semantic Segmentation on Android Device using Deep Learning (딥-러닝을 활용한 안드로이드 플랫폼에서의 이미지 시맨틱 분할 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.88-91
    • /
    • 2020
  • Image segmentation is the task of partitioning an image into multiple sets of pixels based on some characteristics. The objective is to simplify the image into a representation that is more meaningful and easier to analyze. In this paper, we apply deep-learning to pre-train the learning model, and implement an algorithm that performs image segmentation in real time by extracting frames for the stream input from the Android device. Based on the open source of DeepLab-v3+ implemented in Tensorflow, some convolution filters are modified to improve real-time operation on the Android platform.

Formation of fine pitch solder bump with high uniformity by the tilted electrode ring (경사진 전극링을 이용한 고균일도의 미세 솔더범프 형성)

  • Ju, Chul-Won;Lee, Kyung-Ho;Min, Byoung-Gue;Kim, Seong-Il;Lee, Jong-Min;Kang, Young-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.323-327
    • /
    • 2004
  • The bubble flow from the wafer surface during plating process was studied in this paper. The plating shape in the opening of photoresist becomes gradated shape in the fountain plating system, because bubbles from the wafer surface are difficult to escape from the deep openings, vias. So, we designed the tilted electrode ring contact to get uniform bump height on all over the wafer and evaluated the film uniformity by SEM and ${\alpha}-step$. In ${\alpha}-step$ measurement, film uniformities in the fountain plating system and the tilted electrode ring contact system were ${\pm}16.6%,\;{\pm}4%$ respectively.

  • PDF

Electrical Properties and Defect States in ZnO Substrates Irradiated by MeV Electron-beam (고 에너지 전자빔 조사에 따른 ZnO 기판의 결함생성 및 전기적 특성 변화)

  • Lee, Dong-Uk;Song, Hoo-Young;Han, Dong-Seok;Kim, Seon-Pil;Kim, Eun-Kyu;Lee, Byung-Cheol
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • The electrical properties and defect states in ZnO substrates were studied during high-energy electron beam irradiations. 1 MeV and 2 MeV electron-beam with dose of $1{\times}10^{16}$ electrons/$cm^2$ were irradiated on Zn-surface of the sample. In the sample irradiated by 1 MeV, the leakage current was increased by electron-beam induced surface defects, while the enhancement of on/off property and the decrease of leakage current appeared in the 2 MeV irradiated sample. From the deep level transient spectroscopy measurements for these samples, it showed that the defect states with the activation energies of $E_c$-0.33 eV and $E_v$+0.8 eV are generated during the high energy electron-beam irradiation. Especially, it considered that the $E_c$-0.33 eV state related with O-vacancy affects to their electrical properties.

Deep Learning-Based Lighting Estimation for Indoor and Outdoor (딥러닝기반 실내와 실외 환경에서의 광원 추출)

  • Lee, Jiwon;Seo, Kwanggyoon;Lee, Hanui;Yoo, Jung Eun;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.31-42
    • /
    • 2021
  • We propose a deep learning-based method that can estimate an appropriate lighting of both indoor and outdoor images. The method consists of two networks: Crop-to-PanoLDR network and LDR-to-HDR network. The Crop-to-PanoLDR network predicts a low dynamic range (LDR) environment map from a single partially observed normal field of view image, and the LDR-to-HDR network transforms the predicted LDR image into a high dynamic range (HDR) environment map which includes the high intensity light information. The HDR environment map generated through this process is applied when rendering virtual objects in the given image. The direction of the estimated light along with ambient light illuminating the virtual object is examined to verify the effectiveness of the proposed method. For this, the results from our method are compared with those from the methods that consider either indoor images or outdoor images only. In addition, the effect of the loss function, which plays the role of classifying images into indoor or outdoor was tested and verified. Finally, a user test was conducted to compare the quality of the environment map created in this study with those created by existing research.

Diagnosis and Visualization of Intracranial Hemorrhage on Computed Tomography Images Using EfficientNet-based Model (전산화 단층 촬영(Computed tomography, CT) 이미지에 대한 EfficientNet 기반 두개내출혈 진단 및 가시화 모델 개발)

  • Youn, Yebin;Kim, Mingeon;Kim, Jiho;Kang, Bongkeun;Kim, Ghootae
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.150-158
    • /
    • 2021
  • Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.

Low Resolution Infrared Image Deep Convolution Neural Network for Embedded System

  • Hong, Yong-hee;Jin, Sang-hun;Kim, Dae-hyeon;Jhee, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose reinforced VGG style network structure for low performance embedded system to classify low resolution infrared image. The combination of reinforced VGG style network structure and global average pooling makes lower computational complexity and higher accuracy. The proposed method classify the synthesize image which have 9 class 3,723,328ea images made from OKTAL-SE tool. The reinforced VGG style network structure composed of 4 filters on input and 16 filters on output from max pooling layer shows about 34% lower computational complexity and about 2.4% higher accuracy then the first parameter minimized network structure made for embedded system composed of 8 filters on input and 8 filters on output from max pooling layer. Finally we get 96.1% accuracy model. Additionally we confirmed the about 31% lower inference lead time in ported C code.

DATCN: Deep Attention fused Temporal Convolution Network for the prediction of monitoring indicators in the tunnel

  • Bowen, Du;Zhixin, Zhang;Junchen, Ye;Xuyan, Tan;Wentao, Li;Weizhong, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.601-612
    • /
    • 2022
  • The prediction of structural mechanical behaviors is vital important to early perceive the abnormal conditions and avoid the occurrence of disasters. Especially for underground engineering, complex geological conditions make the structure more prone to disasters. Aiming at solving the problems existing in previous studies, such as incomplete consideration factors and can only predict the continuous performance, the deep attention fused temporal convolution network (DATCN) is proposed in this paper to predict the spatial mechanical behaviors of structure, which integrates both the temporal effect and spatial effect and realize the cross-time prediction. The temporal convolution network (TCN) and self-attention mechanism are employed to learn the temporal correlation of each monitoring point and the spatial correlation among different points, respectively. Then, the predicted result obtained from DATCN is compared with that obtained from some classical baselines, including SVR, LR, MLP, and RNNs. Also, the parameters involved in DATCN are discussed to optimize the prediction ability. The prediction result demonstrates that the proposed DATCN model outperforms the state-of-the-art baselines. The prediction accuracy of DATCN model after 24 hours reaches 90 percent. Also, the performance in last 14 hours plays a domain role to predict the short-term behaviors of the structure. As a study case, the proposed model is applied in an underwater shield tunnel to predict the stress variation of concrete segments in space.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

A Comparative Study on Performance of Deep Learning Models for Vision-based Concrete Crack Detection according to Model Types (영상기반 콘크리트 균열 탐지 딥러닝 모델의 유형별 성능 비교)

  • Kim, Byunghyun;Kim, Geonsoon;Jin, Soomin;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.50-57
    • /
    • 2019
  • In this study, various types of deep learning models that have been proposed recently are classified according to data input / output types and analyzed to find the deep learning model suitable for constructing a crack detection model. First the deep learning models are classified into image classification model, object segmentation model, object detection model, and instance segmentation model. ResNet-101, DeepLab V2, Faster R-CNN, and Mask R-CNN were selected as representative deep learning model of each type. For the comparison, ResNet-101 was implemented for all the types of deep learning model as a backbone network which serves as a main feature extractor. The four types of deep learning models were trained with 500 crack images taken from real concrete structures and collected from the Internet. The four types of deep learning models showed high accuracy above 94% during the training. Comparative evaluation was conducted using 40 images taken from real concrete structures. The performance of each type of deep learning model was measured using precision and recall. In the experimental result, Mask R-CNN, an instance segmentation deep learning model showed the highest precision and recall on crack detection. Qualitative analysis also shows that Mask R-CNN could detect crack shapes most similarly to the real crack shapes.