본 논문은 단일 영상 기반의 초해상도에서 결과의 품질을 개선하기 위해 적응형 가중치를 적용한 잔차 블록으로 구성된 다중 블록 구조를 이용하는 방법을 제안하였다. 딥러닝을 이용한 초해상도를 생성하는 과정에서 품질 향상을 위한 가장 중요한 요소는 특징 추출 및 적용이다. 해상도가 낮아 이미 손실된 세부사항을 복원하기 위해 다양한 특징을 추출하는 것이 최우선이지만 네트워크의 구조가 깊어지거나 복잡해지는 등의 문제가 발생하기 때문에 실제 적용에서 제한사항이 있다. 따라서 특징 추출 과정은 효율적으로 구성하고 적용 과정을 개선하여 품질을 개선하였다. 이를 위해 최초 특징 추출 이후 다중 블록 구조를 구성하였고 블록 내부에는 중첩된 잔차 블록을 구성한 뒤 적응형 가중치를 적용하였다. 또한 최종 고해상도 복원을 위해 다중 커널을 이용한 영상 재구성 과정을 적용함으로써 결과물의 품질을 향상시켰다. 평가를 위해 원본 영상 대비 PSNR과 SSIM 값을 구하였고 기존 알고리즘과 비교하여 제안하는 방법의 성능 향상을 확인하였다.
In 3D computer graphics, a depth map is an image that provides information related to the distance from the viewpoint to the subject's surface. Stereo sensors, depth cameras, and imaging systems using an active illumination system and a time-resolved detector can perform accurate depth measurements with their own light sources. The 3D image information obtained through the depth map is useful in 3D modeling, autonomous vehicle navigation, object recognition and remote gesture detection, resolution-enhanced medical images, aviation and defense technology, and robotics. In addition, the depth map information is important data used for extracting and restoring multi-view images, and extracting phase information required for digital hologram synthesis. This study is oriented toward a recent research trend in deep learning-based 3D data analysis methods and depth map information extraction technology using a convolutional neural network. Further, the study focuses on 3D image processing technology related to digital hologram and multi-view image extraction/reconstruction, which are becoming more popular as the computing power of hardware rapidly increases.
Choi, Se Hwan;Choi, Hyun Joon;Min, Chul Hee;Chung, Young Hyun;Ahn, Jae Joon
Nuclear Engineering and Technology
/
제53권3호
/
pp.888-893
/
2021
The International Atomic Energy Agency has developed a tomographic imaging system for accomplishing the total fuel rod-by-rod verification time of fuel assemblies within the order of 1-2 h, however, there are still limitations for some fuel types. The aim of this study is to develop a deep learning-based denoising process resulting in increasing the tomographic image acquisition speed of fuel assembly compared to the conventional techniques. Convolutional AutoEncoder (CAE) was employed for denoising the low-quality images reconstructed by filtered back-projection (FBP) algorithm. The image data set was constructed by the Monte Carlo method with the FBP and ground truth (GT) images for 511 patterns of missing fuel rods. The de-noising performance of the CAE model was evaluated by comparing the pixel-by-pixel subtracted images between the GT and FBP images and the GT and CAE images; the average differences of the pixel values for the sample image 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the FBP images, and 0.5%, 1.4% and 1.9% for the predicted image, respectively. Even for the FBP images not discriminable the source patterns, the CAE model could successfully estimate the patterns similarly with the GT image.
Deep-learning-based Super-Resolution (SR) methods were evaluated to reconstruct pressure fields with a high resolution from low-resolution images taken from a coarse grid simulation. In addition to a canonical SRCNN(super-resolution convolutional neural network) model, two modified models from SRCNN, adding an activation function (ReLU or Sigmoid function) to the output layer, were considered in the present study. High resolution images obtained by three models were more vivid and reliable qualitatively, compared with a conventional super-resolution method of bicubic interpolation. A quantitative comparison of statistical similarity showed that SRCNN model with Sigmoid function achieved best performance with less dependency on original resolution of input images.
Imaging through multicore fiber (MCF) is of great significance in the biomedical domain. Although several techniques have been developed to image an object from a signal passing through MCF, these methods are strongly dependent on the surroundings, such as vibration and the temperature fluctuation of the fiber's environment. In this paper, we apply a new, strong technique called deep learning to reconstruct the phase image through a MCF in which each core is multimode. To evaluate the network, we employ the binary cross-entropy as the loss function of a convolutional neural network (CNN) with improved U-net structure. The high-quality reconstruction of input objects upon spatial light modulation (SLM) can be realized from the speckle patterns of intensity that contain the information about the objects. Moreover, we study the effect of MCF length on image recovery. It is shown that the shorter the fiber, the better the imaging quality. Based on our findings, MCF may have applications in fields such as endoscopic imaging and optical communication.
제품을 생산하는 설비의 고장이나 이상 현상은 곧 제품의 결함 및 생산라인 가동 중단으로 이어져 제조 업체의 막대한 경제적 손실의 원인이 된다. 스마트팩토리 서비스의 확산으로 공장에서 많은 양의 데이터가 수집됨에 따라, 이를 활용하여 제조 현장의 효율이나 제조 설비의 고장 예측 및 진단을 위한 인공지능 기반의 연구가 활발히 이어지고 있다. 하지만 정상과 이상을 구분 짓는 레이블 정보가 명확하지 않고 이상에 대한 극심한 클래스 불균형을 가지는 제조 데이터의 특징으로 인하여 분류 모델이나 이상탐지 모델의 개발에는 큰 어려움이 존재한다. 본 논문에서는 딥러닝 모델의 재구성 손실값을 이용하여 제조 설비의 이상탐지를 위한 딥러닝 알고리즘을 제안하고 성능을 분석하였다. 해당 알고리즘은 이상 데이터를 제외한 설비의 제조 데이터, 즉 정상 데이터에만 의존하여 이상을 감지한다.
Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.
자기공명영상(이하 MRI)은 복부 영상에서 국소 병변의 감지와 특성을 찾을 수 있는 것 때문에 중요한 역할을 한다. 그러나 MRI 검사에 상대적으로 긴 검사 시간과 호흡 유지 기법에서 움직임 관리와 같은 몇 가지 힘든 요인이 있다. 최근에는 검사 시간을 줄이면서 적절한 이미지 품질을 유지하는 기법인 평행 이미징, 압축 감지(compressed sensing) 및 최첨단 딥 러닝(deep learning) 기술이 등장하여 문제 해결 전략을 가능하게 하고 있다. 또한, 역동적 조영증강 영상에서 자유 호흡 기법은, 추가 차원(extra-dimensional)-부피 보간 호흡 유지 검사(volumetric interpolated breath-hold examination) 및 황금 각도 방사형 희소 병렬(golden-angle radial sparse parallel), 간 가속 볼륨 획득(liver acceleration volume acquisition) 스타와 같은, 심한 호흡곤란이나 마취 중인 환자에게서 복부 MRI를 시행하는 것을 돕는다. 이 임상화보에서는 시간을 줄이면서도 이미지 품질을 유지하기 위한 다양한 고급 복부 MRI 기술과 역동적 영상을 위한 자유 호흡 기술을 제시하고 또한 이를 통한 예시들을 보여주고자 한다. 이러한 첨단 기법들의 고찰은 적용된 시퀀스의 적절한 해석에 도움을 줄 것이다.
인터넷 컴퓨팅 환경의 변화, 새로운 서비스 출현, 그리고 지능화되어 가는 해커들의 다양한 공격으로 인한 규칙 기반 침입탐지시스템의 한계점을 극복하기 위해 기계학습 및 딥러닝 기술을 활용한 네트워크 이상 검출(NAD: Network Anomaly Detection)에 대한 관심이 집중되고 있다. NAD를 위한 대부분의 기존 기계학습 및 딥러닝 기술은 '정상'과 '공격'으로 레이블링된 훈련용 데이터 셋을 학습하는 지도학습 방법을 사용한다. 본 논문에서는 공격의 징후가 없는 일상의 네트워크에서 수집할 수 있는 레이블링이 필요 없는 데이터 셋을 이용하는 비지도학습 오토 엔코더(AE: AutoEncoder)를 활용한 NAD 적용 가능성을 제시한다. AE 성능을 검증하기 위해 NSL-KDD 훈련 및 시험 데이터 셋을 사용해 정확도, 정밀도, 재현율, f1-점수, 그리고 ROC AUC (Receiver Operating Characteristic Area Under Curve) 값을 보인다. 특히 이들 성능지표를 대상으로 AE의 층수, 규제 강도, 그리고 디노이징 효과 등을 분석하여 레퍼런스 모델을 제시하였다. AE의 훈련 데이터 셋에 대한 재생오류 82-th 백분위수를 기준 값으로 KDDTest+와 KDDTest-21 시험 데이터 셋에 대해 90.4%와 89% f1-점수를 각각 보였다.
본 논문에서는 함정전투체계의 EOTS나 IRST에서 획득한 영상을 초고해상도 영상으로 복원한다. 저해상도에서 초고해상도의 영상을 생성하는 생성 모델과 이를 판별하는 판별 모델로 구성된 생성적 적대 신경망을 이용하고, 다양한 학습 파라미터의 변화를 통한 최적의 값을 제안한다. 실험에 사용되는 학습 파라미터는 crop size와 sub-pixel layer depth, 학습 이미지 종류로 구성되며, 평가는 일반적인 영상 품질 평가 지표에 추가적으로 특징점 추출 알고리즘을 함께 사용하였다. 그 결과, Crop size가 클수록, Sub-pixel layer depth가 깊을수록, 고해상도의 학습이미지를 사용할수록 더 좋은 품질의 영상을 생성한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.