• 제목/요약/키워드: Deep learning reconstruction

검색결과 108건 처리시간 0.023초

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.

Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction

  • Jung Hee Hong;Eun-Ah Park;Whal Lee;Chulkyun Ahn;Jong-Hyo Kim
    • Korean Journal of Radiology
    • /
    • 제21권10호
    • /
    • pp.1165-1177
    • /
    • 2020
  • Objective: To assess the feasibility of applying a deep learning-based denoising technique to coronary CT angiography (CCTA) along with iterative reconstruction for additional noise reduction. Materials and Methods: We retrospectively enrolled 82 consecutive patients (male:female = 60:22; mean age, 67.0 ± 10.8 years) who had undergone both CCTA and invasive coronary artery angiography from March 2017 to June 2018. All included patients underwent CCTA with iterative reconstruction (ADMIRE level 3, Siemens Healthineers). We developed a deep learning based denoising technique (ClariCT.AI, ClariPI), which was based on a modified U-net type convolutional neural net model designed to predict the possible occurrence of low-dose noise in the originals. Denoised images were obtained by subtracting the predicted noise from the originals. Image noise, CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were objectively calculated. The edge rise distance (ERD) was measured as an indicator of image sharpness. Two blinded readers subjectively graded the image quality using a 5-point scale. Diagnostic performance of the CCTA was evaluated based on the presence or absence of significant stenosis (≥ 50% lumen reduction). Results: Objective image qualities (original vs. denoised: image noise, 67.22 ± 25.74 vs. 52.64 ± 27.40; SNR [left main], 21.91 ± 6.38 vs. 30.35 ± 10.46; CNR [left main], 23.24 ± 6.52 vs. 31.93 ± 10.72; all p < 0.001) and subjective image quality (2.45 ± 0.62 vs. 3.65 ± 0.60, p < 0.001) improved significantly in the denoised images. The average ERDs of the denoised images were significantly smaller than those of originals (0.98 ± 0.08 vs. 0.09 ± 0.08, p < 0.001). With regard to diagnostic accuracy, no significant differences were observed among paired comparisons. Conclusion: Application of the deep learning technique along with iterative reconstruction can enhance the noise reduction performance with a significant improvement in objective and subjective image qualities of CCTA images.

Structural health monitoring response reconstruction based on UAGAN under structural condition variations with few-shot learning

  • Jun, Li;Zhengyan, He;Gao, Fan
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.687-701
    • /
    • 2022
  • Inevitable response loss under complex operational conditions significantly affects the integrity and quality of measured data, leading the structural health monitoring (SHM) ineffective. To remedy the impact of data loss, a common way is to transfer the recorded response of available measure point to where the data loss occurred by establishing the response mapping from measured data. However, the current research has yet addressed the structural condition changes afterward and response mapping learning from a small sample. So, this paper proposes a novel data driven structural response reconstruction method based on a sophisticated designed generating adversarial network (UAGAN). Advanced deep learning techniques including U-shaped dense blocks, self-attention and a customized loss function are specialized and embedded in UAGAN to improve the universal and representative features extraction and generalized responses mapping establishment. In numerical validation, UAGAN efficiently and accurately captures the distinguished features of structural response from only 40 training samples of the intact structure. Besides, the established response mapping is universal, which effectively reconstructs responses of the structure suffered up to 10% random stiffness reduction or structural damage. In the experimental validation, UAGAN is trained with ambient response and applied to reconstruct response measured under earthquake. The reconstruction losses of response in the time and frequency domains reached 16% and 17%, that is better than the previous research, demonstrating the leading performance of the sophisticated designed network. In addition, the identified modal parameters from reconstructed and the corresponding true responses are highly consistent indicates that the proposed UAGAN is very potential to be applied to practical civil engineering.

소아 흉부 CT 검사 시 딥러닝 영상 재구성의 유용성 (Usefulness of Deep Learning Image Reconstruction in Pediatric Chest CT)

  • 김도훈;이효영
    • 한국방사선학회논문지
    • /
    • 제17권3호
    • /
    • pp.297-303
    • /
    • 2023
  • 소아 전산화단층촬영(Computed Tomography, CT) 검사 시 어린 환자들의 협조가 어려워 검사 실패나 재검사가 빈번히 발생할 수 있다. 딥러닝 이미지 재구성(Deep Learning Image Reconstruction, DLIR) 방법은 방사선 감수성이 높은 소아 환자들의 CT 검사에서 재검사율을 낮추면서 진단적 가치가 높은 영상을 획득할 수 있다. 본 연구에서는 DLIR을 적용하여 소아 흉부 CT 검사에서 호흡이나 움직임으로 인한 노이즈를 줄이고 임상적으로 유용한 영상을 얻기 위한 가능성을 조사하였다. 경상남도 소재의 P병원에서 7세 미만의 소아 43명의 흉부 CT 검사 데이터를 후향적으로 분석하였으며, 필터링 역 투영 재구성법(Filtered Back Projection, FBP), 반복적 재구성법(Adaptive Statistical Iterative Reconstruction, ASIR-50), 딥러닝 알고리즘인 True Fidelity-Middle(TF-M)의 영상을 비교하였다. 조영 증강된 흉부 영상 중 오른쪽 상행 대동맥(Ascending Aorta, AA)과 등 근육(Back Muscle, BM)에 동일한 ROI를 그리고 각 영상에서 HU값을 이용하여 노이즈(Standard deviation, SD)를 측정하였다. 통계분석은 SPSS(ver. 22.0)를 사용하여 세 측정치의 평균값을 일원 배치 분산분석(One-way ANOVA)으로 분석하였다. 연구의 결과로 AA의 SD값은 FBP=25.65±3.75, ASIR-50=19.08±3.93, TF-M=17.05±4.45 로 나타났으며(F=66.72, p=0.00), BM의 SD값은 FBP=26.64±3.81, ASIR-50=19.19±3.37, TF-M=19.87±4.25 로 나타났다(F=49.54, p=0.00). 사후검정의 결과는 세 그룹간 유의한 차이가 있었다. DLIR 재구성 방법은 기존의 재구성 방법과 비교하여 유의하게 낮은 노이즈 값을 보였다. 따라서 딥러닝 알고리즘인 TrueFidelity-Middle(TF-M)의 적용은 소아 흉부 CT 검사 시 호흡이나 움직임에 의한 영상 화질의 저하를 줄일 수 있어 임상적으로 매우 유용하게 활용될 것으로 기대된다.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

소아 흉부 CT 검사에서 재구성 기법에 따른 영상의 유용성 평가 (Evaluation of the usefulness of Images according to Reconstruction Techniques in Pediatric Chest CT)

  • 김구;곽종혁;이승재
    • 한국방사선학회논문지
    • /
    • 제17권3호
    • /
    • pp.285-295
    • /
    • 2023
  • 기술의 발전으로 CT 검사에 있어 환자가 받는 피폭선량을 줄이기 위한 노력은 새로운 재구성 기법 개발과 함께 계속 진행되고 있다. 최근에는 반복적 재구성 기법의 한계를 극복하기 위해 딥러닝 재구성 기법이 개발되었다. 본 연구는 소아 흉부 CT 영상에서 재구성 기법에 따른 영상의 유용성을 평가하였다. 환자 실험은 2021년 1월 2일부터 2022년 12월 31일까지 경상남도 P 병원에서 흉부 조영 CT 검사를 받은 소아 환자 중 85명을 대상으로 연구를 진행하였다. 팬텀 실험에 사용된 팬텀은 Pediatric Whole Body Phantom PBU-70이다. 검사 후 FBP, ASIR-V(50%), DLIR(TF-Medium,High)로 영상을 재구성했고, 동일한 크기의 ROI를 설정하여 HU값, SD값을 획득하여 SNR, CNR 값을 산출하여 영상을 평가하였다. 그 결과 DLIR의 TF-H가 모든 실험에서 ASIR-V(50%)와 TF-M에 비해 잡음 값이 가장 낮았으며, SNR과 CNR의 값이 가장 높았다. 소아 흉부 CT 검사에서 DLIR이 적용된 TF 영상이 ASiR-V 영상보다 잡음이 적었고, CNR과 SNR은 높은 것으로 나타났으며 DLIR이 적용되면 기존의 재구성법에 비해 영상의 질이 더 향상될 것으로 판단된다.

Very deep super-resolution for efficient cone-beam computed tomographic image restoration

  • Hwang, Jae Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • 제50권4호
    • /
    • pp.331-337
    • /
    • 2020
  • Purpose: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. Materials and Methods: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. Results: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. Conclusion: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.

Generating 3D Digital Twins of Real Indoor Spaces based on Real-World Point Cloud Data

  • Wonseop Shin;Jaeseok Yoo;Bumsoo Kim;Yonghoon Jung;Muhammad Sajjad;Youngsup Park;Sanghyun Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2381-2398
    • /
    • 2024
  • The construction of virtual indoor spaces is crucial for the development of metaverses, virtual production, and other 3D content domains. Traditional methods for creating these spaces are often cost-prohibitive and labor-intensive. To address these challenges, we present a pipeline for generating digital twins of real indoor environments from RGB-D camera-scanned data. Our pipeline synergizes space structure estimation, 3D object detection, and the inpainting of missing areas, utilizing deep learning technologies to automate the creation process. Specifically, we apply deep learning models for object recognition and area inpainting, significantly enhancing the accuracy and efficiency of virtual space construction. Our approach minimizes manual labor and reduces costs, paving the way for the creation of metaverse spaces that closely mimic real-world environments. Experimental results demonstrate the effectiveness of our deep learning applications in overcoming traditional obstacles in digital twin creation, offering high-fidelity digital replicas of indoor spaces. This advancement opens for immersive and realistic virtual content creation, showcasing the potential of deep learning in the field of virtual space construction.

Single Image Super Resolution Reconstruction Based on Recursive Residual Convolutional Neural Network

  • Cao, Shuyi;Wee, Seungwoo;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.98-101
    • /
    • 2019
  • At present, deep convolutional neural networks have made a very important contribution in single-image super-resolution. Through the learning of the neural networks, the features of input images are transformed and combined to establish a nonlinear mapping of low-resolution images to high-resolution images. Some previous methods are difficult to train and take up a lot of memory. In this paper, we proposed a simple and compact deep recursive residual network learning the features for single image super resolution. Global residual learning and local residual learning are used to reduce the problems of training deep neural networks. And the recursive structure controls the number of parameters to save memory. Experimental results show that the proposed method improved image qualities that occur in previous methods.

  • PDF

Application of a deep learning algorithm to Compton imaging of radioactive point sources with a single planar CdTe pixelated detector

  • Daniel, G.;Gutierrez, Y.;Limousin, O.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1747-1753
    • /
    • 2022
  • Compton imaging is the main method for locating radioactive hot spots emitting high-energy gamma-ray photons. In particular, this imaging method is crucial when the photon energy is too high for coded-mask aperture imaging methods to be effective or when a large field of view is required. Reconstruction of the photon source requires advanced Compton event processing algorithms to determine the exact position of the source. In this study, we introduce a novel method based on a Deep Learning algorithm with a Convolutional Neural Network (CNN) to perform Compton imaging. This algorithm is trained on simulated data and tested on real data acquired with Caliste, a single planar CdTe pixelated detector. We show that performance in terms of source location accuracy is equivalent to state-of-the-art algorithms, while computation time is significantly reduced and sensitivity is improved by a factor of ~5 in the Caliste configuration.