• Title/Summary/Keyword: Deep learning neural network

Search Result 1,737, Processing Time 0.029 seconds

A Deep Learning Model for Predicting User Personality Using Social Media Profile Images

  • Kanchana, T.S.;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.265-271
    • /
    • 2022
  • Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.

Learning Less Random to Learn Better in Deep Reinforcement Learning with Noisy Parameters

  • Kim, Chayoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.127-134
    • /
    • 2019
  • In terms of deep Reinforcement Learning (RL), exploration can be worked stochastically in the action of a state space. On the other hands, exploitation can be done the proportion of well generalization behaviors. The balance of exploration and exploitation is extremely important for better results. The randomly selected action with ε-greedy for exploration has been regarded as a de facto method. There is an alternative method to add noise parameters into a neural network for richer exploration. However, it is not easy to predict or detect over-fitting with the stochastically exploration in the perturbed neural network. Moreover, the well-trained agents in RL do not necessarily prevent or detect over-fitting in the neural network. Therefore, we suggest a novel design of a deep RL by the balance of the exploration with drop-out to reduce over-fitting in the perturbed neural networks.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Deep Learning System based on Morphological Neural Network (몰포러지 신경망 기반 딥러닝 시스템)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • In this paper, we propose a deep learning system based on morphological neural network(MNN). The deep learning layers are morphological operation layer, pooling layer, ReLU layer, and the fully connected layer. The operations used in morphological layer are erosion, dilation, and edge detection, etc. Unlike CNN, the number of hidden layers and kernels applied to each layer is limited in MNN. Because of the reduction of processing time and utility of VLSI chip design, it is possible to apply MNN to various mobile embedded systems. MNN performs the edge and shape detection operations with a limited number of kernels. Through experiments using database images, it is confirmed that MNN can be used as a deep learning system and its performance.

Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks

  • Naseer, Sheraz;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5159-5178
    • /
    • 2018
  • Network Intrusion detection is a rapidly growing field of information security due to its importance for modern IT infrastructure. Many supervised and unsupervised learning techniques have been devised by researchers from discipline of machine learning and data mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural network (DCNN) based intrusion detection system (IDS) is proposed, implemented and analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over configuration space. Proposed system is trained and tested on NSLKDD training and testing datasets using GPU. Performance comparisons of proposed DCNN model are provided with other classifiers using well-known metrics including Receiver operating characteristics (RoC) curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average precision (mAP). The experimental results of proposed DCNN based IDS shows promising results for real world application in anomaly detection systems.

Measurement Method of Height of White Light Scanning Interferometer using Deep Learning (Deep Learning을 사용한 백색광 주사 간섭계의 높이 측정 방법)

  • Baek, Sang Hyune;Hwang, Wonjun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.864-875
    • /
    • 2018
  • In this paper, we propose a measurement method for height of white light scanning interferometer using deep learning. In order to measure the fine surface shape, a three-dimensional surface shape measurement technique is required. A typical example is a white light scanning interferometer. In order to calculate the surface shape from the measurement image of the white light scanning interferometer, the height of each pixel must be calculated. In this paper, we propose a neural network for height calculation and use virtual data generation method to train this neural network. The accuracy was measured by inputting 57 actual data to the neural network which had completed the learning. We propose two new functions for accuracy measurement. We have analyzed the cases where there are many errors among the accuracy calculation values, and it is confirmed that there are many errors when there is no interference fringe or outside the learned range. We confirmed that the proposed neural network works correctly in most cases. We expect better results if we improve the way we generate learning data.

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

Efficient Iris Recognition using Deep-Learning Convolution Neural Network (딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식)

  • Choi, Gwang-Mi;Jeong, Yu-Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.521-526
    • /
    • 2020
  • This paper presents an improved HOLP neural network that adds 25 average values to a typical HOLP neural network using 25 feature vector values as input values by applying high-order local autocorrelation function, which is excellent for extracting immutable feature values of iris images. Compared with deep learning structures with different types, we compared the recognition rate of iris recognition using Back-Propagation neural network, which shows excellent performance in voice and image field, and synthetic product neural network that integrates feature extractor and classifier.

A Deep Learning based IOT Device Recognition System (딥러닝을 이용한 IOT 기기 인식 시스템)

  • Chu, Yeon Ho;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 2019
  • As the number of IOT devices is growing rapidly, various 'see-thru connection' techniques have been reported for efficient communication with them. In this paper, we propose a deep learning based IOT device recognition system for interaction with these devices. The overall system consists of a TensorFlow based deep learning server and two Android apps for data collection and recognition purposes. As the basic neural network model, we adopted Google's inception-v3, and modified the output stage to classify 20 types of IOT devices. After creating a data set consisting of 1000 images of 20 categories, we trained our deep learning network using a transfer learning technology. As a result of the experiment, we achieve 94.5% top-1 accuracy and 98.1% top-2 accuracy.

A MODIFIED EXTENDED KALMAN FILTER METHOD FOR MULTI-LAYERED NEURAL NETWORK TRAINING

  • KIM, KYUNGSUP;WON, YOOJAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • This paper discusses extended Kalman filter method for solving learning problems of multilayered neural networks. A lot of learning algorithms for deep layered network are sincerely suffered from complex computation and slow convergence because of a very large number of free parameters. We consider an efficient learning algorithm for deep neural network. Extended Kalman filter method is applied to parameter estimation of neural network to improve convergence and computation complexity. We discuss how an efficient algorithm should be developed for neural network learning by using Extended Kalman filter.