• 제목/요약/키워드: Deep learning based control

검색결과 237건 처리시간 0.027초

심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증 (Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System)

  • 김영수;이준범;이찬영;전혜리;김승필
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

딥러닝 기반 송신전력 조절방안의 성능검증 (Performance Verification of Deep Learning based Transmit Power Control)

  • 이웅섭;김성환;류종열;반태원
    • 한국정보통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.326-332
    • /
    • 2019
  • 최근 딥러닝 기술이 큰 관심을 받으며 다양한 분야에 적용되고 있다. 특히 다양한 무선통신기술에 딥러닝을 접목하여 기존 통신시스템의 한계를 뛰어넘으려는 시도가 이루어지고 있다. 본 논문에서는 딥러닝 기반 무선통신 시스템 송신전력 조절방안의 성능검증을 수행하였다. 딥러닝 기반 송신전력 조절방안에서는 수학적 최적화 문제를 직접 풀어서 최적의 전력을 결정하는 기존 방식과 달리 심층신경망 구조를 학습시켜서 채널에 따라 최적의 송신전력을 찾는 General solver를 도출하여 이를 이용한다. 특히 시스템의 주파수 효율을 심층신경망 학습의 손실함수로 사용함으로써 라벨없이 학습을 가능케 한다. 본 논문에서는 Tensorflow 기반 성능분석을 통해 딥러닝 기반 송신전력 조절방안과 최적방안의 성능이 일치함을 보였고, 또한 제안 방안이 기존의 방식에 비해서 1/200의 계산복잡도로 송신전력을 찾을 수 있음을 보임으로써 실제 무선통신시스템에서의 적용가능성을 검증하였다.

수중운동체의 롤 제어를 위한 Deep Deterministic Policy Gradient 기반 강화학습 (Reinforcement Learning based on Deep Deterministic Policy Gradient for Roll Control of Underwater Vehicle)

  • 김수용;황연걸;문성웅
    • 한국군사과학기술학회지
    • /
    • 제24권5호
    • /
    • pp.558-568
    • /
    • 2021
  • The existing underwater vehicle controller design is applied by linearizing the nonlinear dynamics model to a specific motion section. Since the linear controller has unstable control performance in a transient state, various studies have been conducted to overcome this problem. Recently, there have been studies to improve the control performance in the transient state by using reinforcement learning. Reinforcement learning can be largely divided into value-based reinforcement learning and policy-based reinforcement learning. In this paper, we propose the roll controller of underwater vehicle based on Deep Deterministic Policy Gradient(DDPG) that learns the control policy and can show stable control performance in various situations and environments. The performance of the proposed DDPG based roll controller was verified through simulation and compared with the existing PID and DQN with Normalized Advantage Functions based roll controllers.

A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.115-119
    • /
    • 2020
  • Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.

Energy-Efficient DNN Processor on Embedded Systems for Spontaneous Human-Robot Interaction

  • Kim, Changhyeon;Yoo, Hoi-Jun
    • Journal of Semiconductor Engineering
    • /
    • 제2권2호
    • /
    • pp.130-135
    • /
    • 2021
  • Recently, deep neural networks (DNNs) are actively used for action control so that an autonomous system, such as the robot, can perform human-like behaviors and operations. Unlike recognition tasks, the real-time operation is essential in action control, and it is too slow to use remote learning on a server communicating through a network. New learning techniques, such as reinforcement learning (RL), are needed to determine and select the correct robot behavior locally. In this paper, we propose an energy-efficient DNN processor with a LUT-based processing engine and near-zero skipper. A CNN-based facial emotion recognition and an RNN-based emotional dialogue generation model is integrated for natural HRI system and tested with the proposed processor. It supports 1b to 16b variable weight bit precision with and 57.6% and 28.5% lower energy consumption than conventional MAC arithmetic units for 1b and 16b weight precision. Also, the near-zero skipper reduces 36% of MAC operation and consumes 28% lower energy consumption for facial emotion recognition tasks. Implemented in 65nm CMOS process, the proposed processor occupies 1784×1784 um2 areas and dissipates 0.28 mW and 34.4 mW at 1fps and 30fps facial emotion recognition tasks.

DLDW: Deep Learning and Dynamic Weighing-based Method for Predicting COVID-19 Cases in Saudi Arabia

  • Albeshri, Aiiad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.212-222
    • /
    • 2021
  • Multiple waves of COVID-19 highlighted one crucial aspect of this pandemic worldwide that factors affecting the spread of COVID-19 infection are evolving based on various regional and local practices and events. The introduction of vaccines since early 2021 is expected to significantly control and reduce the cases. However, virus mutations and its new variant has challenged these expectations. Several countries, which contained the COVID-19 pandemic successfully in the first wave, failed to repeat the same in the second and third waves. This work focuses on COVID-19 pandemic control and management in Saudi Arabia. This work aims to predict new cases using deep learning using various important factors. The proposed method is called Deep Learning and Dynamic Weighing-based (DLDW) COVID-19 cases prediction method. Special consideration has been given to the evolving factors that are responsible for recent surges in the pandemic. For this purpose, two weights are assigned to data instance which are based on feature importance and dynamic weight-based time. Older data is given fewer weights and vice-versa. Feature selection identifies the factors affecting the rate of new cases evolved over the period. The DLDW method produced 80.39% prediction accuracy, 6.54%, 9.15%, and 7.19% higher than the three other classifiers, Deep learning (DL), Random Forest (RF), and Gradient Boosting Machine (GBM). Further in Saudi Arabia, our study implicitly concluded that lockdowns, vaccination, and self-aware restricted mobility of residents are effective tools in controlling and managing the COVID-19 pandemic.

전력선 통신을 이용한 전기자동차 충전 시스템에서 딥 러닝 기반 오류제어 (Deep Learning Based Error Control in Electric Vehicle Charging Systems Using Power Line Communication)

  • 선영규;황유민;심이삭;김진영
    • 한국ITS학회 논문지
    • /
    • 제17권4호
    • /
    • pp.150-158
    • /
    • 2018
  • 본 논문에서는 전력선 통신을 이용하는 전기자동차 충전 시스템에 대해 소개하고 전력선 통신을 이용하는 전기자동차 충전 시스템의 제어 신호에 오류가 발생했을 때 딥 러닝 알고리즘을 적용하여 오류를 정정하는 방식을 제안한다. 제어 신호의 오류 발견과 정정은 기존의 오류정정부호 기법을 통해 해결할 수 있으나 딥 러닝 기반의 오류정정부호 기법을 이용하여 더욱 효율적으로 오류를 발견하고 정정한다. 그래서 딥 러닝 기반의 오류정정부호 기법에 대해 소개하며 이 기법을 전력선 통신을 이용하는 전기자동차 충전 시스템에 적용하여 시뮬레이션을 진행하고 비트 오류율로 성능을 확인하여 딥 러닝 기반의 오류정정부호 기법이 기존의 기법보다 효율적인지를 판단한다.

NOMA 시스템에서 SINR 정보 피드백을 이용한 딥러닝 기반 송신 전력 제어의 성능 분석 (Performance Analysis of Deep Learning Based Transmit Power Control Using SINR Information Feedback in NOMA Systems)

  • 김동현;이인호
    • 한국정보통신학회논문지
    • /
    • 제25권5호
    • /
    • pp.685-690
    • /
    • 2021
  • 본 논문에서는 하향링크 비직교 다중 접속 시스템에서 최소 데이터 전송률을 만족하며 데이터 전송률의 총합을 최대화 할 수 있는 딥러닝 기반의 송신 전력 제어 기법을 제안한다. 하향링크 비직교 다중 접속 시스템에서 사용자가 위치한 셀 이외의 기지국으로부터 발생할 수 있는 동일 채널 간섭을 고려하고, 시스템 피드백 오버헤드를 줄이기 위하여 사용자는 채널 상태 정보 대신에 신호 대 간섭 및 잡음비 정보를 피드백 한다. 따라서 기지국은 신호 대 간섭 및 잡음비 정보만을 이용하여 송신 전력을 제어한다. 함축적 신호 대 간섭 및 잡음비 정보의 이용은 정보 차원을 감소시키는 장점은 있지만 데이터 전송률을 감소시킬 수 있는 단점이 있다. 본 논문에서는 딥러닝 기반의 학습 방식으로 이 문제를 해결하고, 딥러닝 입력의 차원을 효과적으로 축소할 경우 학습의 성능을 향상시킬 수 있음을 보여준다. 시뮬레이션을 통해서 제안된 딥러닝 기반의 송신 전력 제어 기법이 최소 데이터 전송률을 만족하며 데이터 전송률의 총합을 향상시킬 수 있음을 입증한다.

다중 교차로에서 협력적 교통신호제어에 대한 연구 (A Study on Cooperative Traffic Signal Control at multi-intersection)

  • 김대호;정옥란
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1381-1386
    • /
    • 2019
  • 도시의 교통 혼잡 문제가 심각해지면서 지능형 교통신호제어가 활발하게 연구되고 있다. 강화학습은 교통신호제어에 가장 활발하게 사용되고 있는 알고리즘으로 최근에는 심층 강화학습 알고리즘이 관심을 끌고 있다. 또한 심층 강화학습 알고리즘이 다양한 분야에서 높은 성능을 보이면서 심층 강화학습의 확장 버전들이 빠른 속도로 등장했다. 하지만 기존 교통신호제어 연구들은 대부분 단일 교차로 환경에서 진행되었으며, 단일 교차로의 교통 혼잡만 완화하는 방법은 도시 전체의 교통 상황을 고려하지 못한다는 한계가 있다. 본 논문에서는 다중 교차로 환경에서 협력적 교통신호제어를 제안한다. 신호제어 알고리즘에는 심층 강화학습의 확장 버전들이 결합된 알고리즘을 적용했으며 다중 교차로를 효율적으로 제어하기 위해 인접한 교차로의 교통 상황을 고려하였다. 실험에서는 제안하는 알고리즘과 기존 심층 강화학습 알고리즘을 비교하였으며, 더 나아가 협력적 방법이 적용된 모델과 적용되지 않은 모델의 실험 결과를 보여줌으로써 높은 성능을 증명한다.