• Title/Summary/Keyword: Deep learning CNN

Search Result 1,108, Processing Time 0.038 seconds

Speech Emotion Recognition Based on Deep Networks: A Review (딥네트워크 기반 음성 감정인식 기술 동향)

  • Mustaqeem, Mustaqeem;Kwon, Soonil
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.331-334
    • /
    • 2021
  • In the latest eras, there has been a significant amount of development and research is done on the usage of Deep Learning (DL) for speech emotion recognition (SER) based on Convolutional Neural Network (CNN). These techniques are usually focused on utilizing CNN for an application associated with emotion recognition. Moreover, numerous mechanisms are deliberated that is based on deep learning, meanwhile, it's important in the SER-based human-computer interaction (HCI) applications. Associating with other methods, the methods created by DL are presenting quite motivating results in many fields including automatic speech recognition. Hence, it appeals to a lot of studies and investigations. In this article, a review with evaluations is illustrated on the improvements that happened in the SER domain though likewise arguing the existing studies that are existence SER based on DL and CNN methods.

Deep Learning Study of the 21cm Differential Brightness Temperature During the Epoch of Reionization

  • Kwon, Yungi;Hong, Sungwook E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.66.2-66.2
    • /
    • 2020
  • We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between z = 6 ~ 13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future.

  • PDF

Text Classification Method Using Deep Learning Model Fusion and Its Application

  • Shin, Seong-Yoon;Cho, Gwang-Hyun;Cho, Seung-Pyo;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.409-410
    • /
    • 2022
  • This paper proposes a fusion model based on Long-Short Term Memory networks (LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification. This method will become an important way to optimize the model and improve the performance of the model.

  • PDF

Comparison Analysis of Deep Learning-based Image Compression Approaches (딥 러닝 기반 이미지 압축 기법의 성능 비교 분석)

  • Yong-Hwan Lee;Heung-Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.129-133
    • /
    • 2023
  • Image compression is a fundamental technique in the field of digital image processing, which will help to decrease the storage space and to transmit the files efficiently. Recently many deep learning techniques have been proposed to promise results on image compression field. Since many image compression techniques have artifact problems, this paper has compared two deep learning approaches to verify their performance experimentally to solve the problems. One of the approaches is a deep autoencoder technique, and another is a deep convolutional neural network (CNN). For those results in the performance of peak signal-to-noise and root mean square error, this paper shows that deep autoencoder method has more advantages than deep CNN approach.

  • PDF

A Study on Application Method of Contour Image Learning to improve the Accuracy of CNN by Data (데이터별 딥러닝 학습 모델의 정확도 향상을 위한 외곽선 특징 적용방안 연구)

  • Kwon, Yong-Soo;Hwang, Seung-Yeon;Shin, Dong-Jin;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • CNN is a type of deep learning and is a neural network used to process images or image data. The filter traverses the image and extracts features of the image to distinguish the image. Deep learning has the characteristic that the more data, the better models can be made, and CNN uses a method of artificially increasing the amount of data by means of data augmentation such as rotation, zoom, shift, and flip to compensate for the weakness of less data. When learning CNN, we would like to check whether outline image learning is helpful in improving performance compared to conventional data augmentation techniques.

A Study on the Deep Learning-based Tree Species Classification by using High-resolution Orthophoto Images (고해상도 정사영상을 이용한 딥러닝 기반의 산림수종 분류에 관한 연구)

  • JANG, Kwangmin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • In this study, we evaluated the accuracy of deep learning-based tree species classification model trained by using high-resolution images. We selected five species classed, i.e., pine, birch, larch, korean pine, mongolian oak for classification. We created 5,000 datasets using high-resolution orthophoto and forest type map. CNN deep learning model is used to tree species classification. We divided training data, verification data, and test data by a 5:3:2 ratio of the datasets and used it for the learning and evaluation of the model. The overall accuracy of the model was 89%. The accuracy of each species were pine 95%, birch 89%, larch 80%, korean pine 86% and mongolian oak 98%.

A Study on Sound Recognition System Based on 2-D Transformation and CNN Deep Learning (2차원 변환과 CNN 딥러닝 기반 음향 인식 시스템에 관한 연구)

  • Ha, Tae Min;Cho, Seongwon;Tra, Ngo Luong Thanh;Thanh, Do Chi;Lee, Keeseong
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • This paper proposes a study on applying signal processing and deep learning for sound recognition that detects sounds commonly heard in daily life (Screaming, Clapping, Crowd_clapping, Car_passing_by and Back_ground, etc.). In the proposed sound recognition, several techniques related to the spectrum of sound waves, augmentation of sound data, ensemble learning for various predictions, convolutional neural networks (CNN) deep learning, and two-dimensional (2-D) data are used for improving the recognition accuracy. The proposed sound recognition technology shows that it can accurately recognize various sounds through experiments.

Transfer Learning-Based Vibration Fault Diagnosis for Ball Bearing (전이학습을 이용한 볼베어링의 진동진단)

  • Subin Hong;Youngdae Lee;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.845-850
    • /
    • 2023
  • In this paper, we propose a method for diagnosing ball bearing vibration using transfer learning. STFT, which can analyze vibration signals in time-frequency, was used as input to CNN to diagnose failures. In order to rapidly learn CNN-based deep artificial neural networks and improve diagnostic performance, we proposed a transfer learning-based deep learning learning technique. For transfer learning, the feature extractor and classifier were selectively learned using a VGG-based image classification model, the data set for learning was publicly available ball bearing vibration data provided by Case Western Reserve University, and performance was evaluated by comparing the proposed method with the existing CNN model. Experimental results not only prove that transfer learning is useful for condition diagnosis in ball bearing vibration data, but also allow other industries to use transfer learning to improve condition diagnosis.

Performance of Exercise Posture Correction System Based on Deep Learning (딥러닝 기반 운동 자세 교정 시스템의 성능)

  • Hwang, Byungsun;Kim, Jeongho;Lee, Ye-Ram;Kyeong, Chanuk;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.177-183
    • /
    • 2022
  • Recently, interesting of home training is getting bigger due to COVID-19. Accordingly, research on applying HAR(human activity recognition) technology to home training has been conducted. However, existing paper of HAR proposed static activity instead of dynamic activity. In this paper, the deep learning model where dynamic exercise posture can be analyzed and the accuracy of the user's exercise posture can be shown is proposed. Fitness images of AI-hub are analyzed by blaze pose. The experiment is compared with three types of deep learning model: RNN(recurrent neural network), LSTM(long short-term memory), CNN(convolution neural network). In simulation results, it was shown that the f1-score of RNN, LSTM and CNN is 0.49, 0.87 and 0.98, respectively. It was confirmed that CNN is more suitable for human activity recognition than other models from simulation results. More exercise postures can be analyzed using a variety learning data.

Comparison of Spatial and Frequency Images for Character Recognition (문자인식을 위한 공간 및 주파수 도메인 영상의 비교)

  • Abdurakhmon, Abduraimjonov;Choi, Hyeon-yeong;Ko, Jaepil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.439-441
    • /
    • 2019
  • Deep learning has become a powerful and robust algorithm in Artificial Intelligence. One of the most impressive forms of Deep learning tools is that of the Convolutional Neural Networks (CNN). CNN is a state-of-the-art solution for object recognition. For instance when we utilize CNN with MNIST handwritten digital dataset, mostly the result is well. Because, in MNIST dataset, all digits are centralized. Unfortunately, the real world is different from our imagination. If digits are shifted from the center, it becomes a big issue for CNN to recognize and provide result like before. To solve that issue, we have created frequency images from spatial images by a Fast Fourier Transform (FFT).

  • PDF