자율 주행 자동차나 소방 로봇과 같은 시스템에서 영상을 얻을 때 다양한 요인들로 인해 잡음, 블러와 같은 열화가 발생한다. 이런 열화된 영상에 직접 영상 분류와 같은 기술을 적용하기 어려워 열화 제거가 불가피하나 이러한 시스템들은 영상의 열화를 인식할 수 없어서 열화된 영상을 복원하는데 어려움이 있다. 본 논문에서는 영상에 적용된 열화를 인지하지 못하는 상황에서 여러 방법들로 열화된 영상으로부터 자연스럽고 선명한 영상을 복원하는 방법을 제안한다. 우리가 제안한 방법은 딥러닝 모델에 채널 어텐션 모듈과 스킵 커넥션을 사용하여 영상에 적용된 열화에 따라 복원에 필요한 채널에 높은 가중치를 적용해 복합 열화 영상의 복원을 진행한다. 이 방법은 다른 복합 열화 복원 방법에 비해 학습이 간단하고 기존의 다른 방법들에 비해 높은 복합 열화 복원 성능을 낸다.
신경망을 이용하여 OCT 영상을 분석하고 다양한 망막 질환을 자동 진단하는 것에 관한 연구들이 활발하게 이루어지고 있다. 이러한 연구가 현실에 적용되기 위한 하나의 중요한 요건은 학습된 신경망이 학습에 사용된 데이터와는 다른 기기에서 생성된 데이터에 대해서도 성능의 큰 하락 없이 일반화될 수 있어야 한다는 것이다. 본 논문에서는 심층 CNN을 이용하여 OCT 영상으로부터 노년기황반변성(AMD)을 자동 진단하는 것을 다룬다. 하나의 OCT 기기로부터 획득한 데이터 셋을 이용하여 신경망을 학습시킨 후 다른 OCT 기기로부터 생산된 이미지를 테스트한 결과 상당한 성능의 하락을 관찰할 수 있었다. 이러한 성능의 하락을 방지하기 위해서 OCT 이미지를 정규화 하는 기법을 제안하고 실험을 통해 그 효과를 분석하였다. 제안한 기법은 OCT 이미지를 분할하여 망막에 해당하는 영역을 찾아낸 후 이미지 내에서 망막 영역이 수평에 가까운 기울기를 가지도록 정렬(align)하여 형태적인 측면에서 OCT 이미지를 정규화 하는 것을 목적으로 한다. 실험을 통하여 제안한 기법이 이종의 기기에서 생성된 OCT 이미지로부터 AMD를 자동진단 하는데 있어서 상당한 성능의 향상을 달성함을 보였다.
본 논문은 저해상도 적외선영상을 사양이 낮은 임베디드 시스템에서 추론 가능하도록 강화된 VGG 스타일과 Global Average Pooling 조합으로 정확도를 증가시키면서 연산량을 최소화하는 딥러닝 컨볼루션 신경망을 이용한 저해상도 적외선 표적 분류 방법을 제안한다. 제안한 알고리즘은 OKTAL-SE로 생성한 합성영상 클래스 9개 3,723,328개를 분류하였다. 최초 임베디드 추론 가능하도록 파라메터 수가 최소화된 최대풀링 레이어 기준 입력단 8개와 출력단 8개 조합에 비해 강화된 VGG 스타일을 적용한 입력단 4개와 출력단 16개 필터수 조합을 이용하여 연산량은 약 34% 감소시켰으며, 정확도는 약 2.4% 증가시켜 최종 정확도 96.1%을 획득하였다. 추가로 C 코드로 포팅하여 수행시간을 확인하였으며, 줄어든 연산량 만큼 수행 시간이 약 32% 줄어든 것을 확인할 수 있었다.
For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.
도시화에 따른 인공피복의 증가는 도시지역의 온도가 주변 교외지역보다 높아지는 UHI (Urban Heat Island; UHI) 현상을 야기한다. 국지기후대(Local Climate Zone; LCZ)는 빌딩의 기하학적 구조와 피복특성에 따라 도시를 분류하는 체계로, UHI 분석을 위해 제안되어 현재 다양한 도시기후 연구에 활용되고 있다. 본 연구는 합성곱신경망(Convolutional Neural Network)과 Landsat 8 위성영상을 이용하여 수원시와 대구광역시의 LCZ 분류모델을 구축하였고, LCZ 지도와 Landsat 8 지표면온도(Land Surface Temperature; LST)를 이용하여 도시 구조적 특성에 따른 LST와 Surface UHI (SUHI) 강도를 분석하였다. LCZ 분류모델은 수원시와 대구광역시에 대해 각각 87.9%와 81.7%의 높은 분류 정확도를 보였다. 대구가 수원보다 전반적으로 모든 LCZ 클래스에서 LST가 높게 나타났으며 건물이 밀집할수록, 건물의 높이가 낮을수록 LST가 증가하는 공통점을 보였다. SUHI 강도는 두 도시 모두 여름철에 가장 강한 값을 가지고 봄과 가을에도 일부 LCZ 클래스를 제외하고 양의 SUHI 강도가 나타났지만 겨울에는 다수의 LCZ 클래스에서 음의 값이 나타났다. 이는 UHI가 여름철에 가장 강하게 나타나며, 겨울에는 일부 도시지역이 교외지역보다 더 차가운 현상이 나타나기도 함을 의미한다. 본 연구는 우리나라 UHI 분석에 있어 LCZ 분류체계의 활용가능성을 확인하였고, 향후 도시기후 분석 및 기후변화 대응 전략수립에 있어 도시의 구조적 특성을 고려하는데 기초자료로 활용될 것으로 기대된다.
최근 4차 산업혁명의 핵심기술인 인공지능, 빅데이터, 사물인터넷의 발전으로 산업 현장에서 가동되는 기계의 자동화 및 무인화에 대한 연구가 활발히 진행되고 있다. 이러한 공정 기계들은 부착된 다양한 센서들로부터 수집된 데이터를 기반으로 제어되고 이를 통해 공정이 관리된다. 만약 센서에 고장이 발생한다면 센서 데이터 이상으로 인해 자동화 기계들이 오작동함으로써 공정 손실 발생뿐만 아니라 인명피해로도 이어질 수 있다. 전문가가 센서의 이상 여부를 주기적으로 확인하여 관리하고 있으나 산업 현장의 여러 가지 환경요인 및 상황으로 인하여 고장점검 시기를 놓치거나 고장을 발견하지 못하여 센서 고장으로 인한 피해를 막지 못하는 경우가 발생하고 있다. 또한 고장이 발생하여도 즉각 감지하지 못함으로써 공정 손실을 더욱 악화시키고 있는 실정이다. 따라서 이러한 돌발적인 센서 고장으로 인한 피해를 막기 위해 자체적으로 임베디드 시스템에서 센서의 고장 유무를 실시간으로 파악하고 빠른 대응을 위해 고장 진단 및 유형을 판별하는 것이 필요하다. 본 논문에서는 대표적인 센서 고장 유형인 erratic fault, hard-over fault, spike fault, stuck fault를 분류하기 위해 딥 뉴럴 네트워크 기반의 고장 진단 시스템을 설계하고 라즈베리 파이를 활용하여 구현하였다. 센서 고장 진단을 위해 구글이 제안한 MobilieNetV2의 Inverted residual block 구조를 사용하여 네트워크를 구성하였다. 본 논문에서 제안하는 방식은 기존 CNN 기법을 사용한 경우보다 메모리 사용량이 줄고 성능이 향상되며, 입력 신호에 대해 구간별로 센서 고장을 분류하여 산업 현장에서 효과적으로 사용될 것으로 기대된다.
현재 자율주행 차량 시장은 3레벨 자율주행 차량의 상용화를 넘어 4레벨 자율주행 차량을 연구, 개발하고 있다. 4레벨 자율주행 차량에서 가장 주목되는 부분은 차량의 안정성이다. 3레벨과 다르게 4레벨의 자율주행 차량은 긴급상황을 차량이 직접 대처해야 하기 때문이다. 본 논문에서는 긴급상황에서의 즉각적인 반응보다는 차량의 목적지가 정해진 순간 사고 가능성이 가장 낮은 경로를 결정하는 Optimized Vehicle Routing System (OVRS)을 제안한다. OVRS는 RSU 통신으로 수집한 도로와 주변 차량 정보를 분석하여 도로의 위험성을 예측하여 주행 중인 차량이 더 안전하고 빠른 길로 주행할 수 있도록 경로를 설정한다. OVRS는 네트워크 라우팅 방식처럼 도로에 있는 RSU를 통하여 도로 상황에 따른 경로 안내를 실행하기 때문에 차량의 안정성을 더욱 높일 수 있다. 실험 결과, OVRS모듈 중 하나인 ASICM의 RPNN은 CNN보다 약 17%, LSTM보다 약 40% 더 좋은 연산 시간을 보였다. 그러나 해당 연구가 PC를 이용한 가상환경에서 실행되었기 때문에, VPDM의 사고 가능성을 실제로 검증하지 못했다. 따라서 향후 사고 데이터 수집으로 인한 VPDM의 정확도 높은 실험과 실제 차량 및 RSU에서 실제 도로를 대상으로 한 실험이 진행되어야 한다.
본 논문에서는 도심 영상에 대해 맨하탄 좌표계를 추정하는 합성곱 신경망(Convolutional Neural Network) 기반의 시스템을 제안한다. 도심 영상에서 맨하탄 좌표계를 추정하는 것은 영상 조정, 3차원 장면 복원 등 컴퓨터 그래픽스 및 비전 문제 해결의 기본이 된다. 제안하는 합성곱 신경망은 GoogLeNet[1]을 기반으로 구성한다. 합성곱 신경망을 훈련하기 위해 구글 스트리트 뷰 API로 영상을 수집하고 기존 캘리브레이션 방법으로 맨하탄 좌표계를 계산하여 데이터셋을 생성한다. 장면마다 새롭게 합성곱 신경망을 학습해야하는 PoseNet[2]과 달리, 본 논문에서 제안하는 시스템은 장면의 구조를 학습하여 맨하탄 좌표계를 추정하기 때문에 학습되지 않은 새로운 장면에 대해서도 맨하탄 좌표계를 추정한다. 제안하는 방법은 학습에 참여하지 않은 구글 스트리트 뷰 영상을 검증 데이터로 테스트하였을 때 $3.157^{\circ}$의 중간 오차로 맨하탄 좌표계를 추정하였다. 또한, 동일 검증 데이터에 대해 제안하는 방법이 기존 맨하탄 좌표계 추정 알고리즘[3]보다 더 낮은 중간 오차를 보이는 것을 확인하였다.
본 연구에서는 비정형 데이터인 사진자료를 이용하여 침수의 발생여부를 판단하는 모델을 개발하였다. 침수분류를 모델 개발을 위하여 CNN기반의 VGG16, VGG19을 이용하였다. 모델을 개발하기 위하여 침수사진과 침수가 발생하지 않은 사진을 웹크롤링 방법을 이용하여 사진을 수집하였다. 웹크롤링 방법을 이용하여 수집한 데이터는 노이즈 데이터가 포함되어 있기 때문에 1차적으로 본 연구와 상관없는 데이터는 소거하였으며, 2차적으로 모델 적용을 위하여 224 × 224로 사진 사이즈를 일괄 변경하였다. 또한 사진의 다양성을 위해서 사진의 각도를 변환하여 이미지 증식을 수행하였으며. 최종적으로 침수사진 2,500장과 침수가 발생하지 않은 사진 2,500장을 이용하여 학습을 수행하였다. 모델 평가결과 모델의 평균 분류성능은 97%로 나타났으며. 향후 본 연구결과를 통하여 개발된 모델을 CCTV관제센터 시스템에 탑재한다면 신속하게 침수피해에 대한 대처가 이루어 질 수 있을 것이라 판단된다.
Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.