• 제목/요약/키워드: Deep learning CNN

검색결과 1,108건 처리시간 0.027초

적응형 채널 어텐션 모듈을 활용한 복합 열화 복원 네트워크 (Image Restoration Network with Adaptive Channel Attention Modules for Combined Distortions)

  • 이해윤;조성현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권3호
    • /
    • pp.1-9
    • /
    • 2019
  • 자율 주행 자동차나 소방 로봇과 같은 시스템에서 영상을 얻을 때 다양한 요인들로 인해 잡음, 블러와 같은 열화가 발생한다. 이런 열화된 영상에 직접 영상 분류와 같은 기술을 적용하기 어려워 열화 제거가 불가피하나 이러한 시스템들은 영상의 열화를 인식할 수 없어서 열화된 영상을 복원하는데 어려움이 있다. 본 논문에서는 영상에 적용된 열화를 인지하지 못하는 상황에서 여러 방법들로 열화된 영상으로부터 자연스럽고 선명한 영상을 복원하는 방법을 제안한다. 우리가 제안한 방법은 딥러닝 모델에 채널 어텐션 모듈과 스킵 커넥션을 사용하여 영상에 적용된 열화에 따라 복원에 필요한 채널에 높은 가중치를 적용해 복합 열화 영상의 복원을 진행한다. 이 방법은 다른 복합 열화 복원 방법에 비해 학습이 간단하고 기존의 다른 방법들에 비해 높은 복합 열화 복원 성능을 낸다.

이종의 OCT 기기로부터 생성된 볼륨 데이터로부터 심층 컨볼루션 신경망을 이용한 AMD 진단 (AMD Identification from OCT Volume Data Acquired from Heterogeneous OCT Machines using Deep Convolutional Neural Network)

  • 권오흠;정유진;권기룡;송하주
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.124-136
    • /
    • 2018
  • 신경망을 이용하여 OCT 영상을 분석하고 다양한 망막 질환을 자동 진단하는 것에 관한 연구들이 활발하게 이루어지고 있다. 이러한 연구가 현실에 적용되기 위한 하나의 중요한 요건은 학습된 신경망이 학습에 사용된 데이터와는 다른 기기에서 생성된 데이터에 대해서도 성능의 큰 하락 없이 일반화될 수 있어야 한다는 것이다. 본 논문에서는 심층 CNN을 이용하여 OCT 영상으로부터 노년기황반변성(AMD)을 자동 진단하는 것을 다룬다. 하나의 OCT 기기로부터 획득한 데이터 셋을 이용하여 신경망을 학습시킨 후 다른 OCT 기기로부터 생산된 이미지를 테스트한 결과 상당한 성능의 하락을 관찰할 수 있었다. 이러한 성능의 하락을 방지하기 위해서 OCT 이미지를 정규화 하는 기법을 제안하고 실험을 통해 그 효과를 분석하였다. 제안한 기법은 OCT 이미지를 분할하여 망막에 해당하는 영역을 찾아낸 후 이미지 내에서 망막 영역이 수평에 가까운 기울기를 가지도록 정렬(align)하여 형태적인 측면에서 OCT 이미지를 정규화 하는 것을 목적으로 한다. 실험을 통하여 제안한 기법이 이종의 기기에서 생성된 OCT 이미지로부터 AMD를 자동진단 하는데 있어서 상당한 성능의 향상을 달성함을 보였다.

Low Resolution Infrared Image Deep Convolution Neural Network for Embedded System

  • Hong, Yong-hee;Jin, Sang-hun;Kim, Dae-hyeon;Jhee, Ho-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.1-8
    • /
    • 2021
  • 본 논문은 저해상도 적외선영상을 사양이 낮은 임베디드 시스템에서 추론 가능하도록 강화된 VGG 스타일과 Global Average Pooling 조합으로 정확도를 증가시키면서 연산량을 최소화하는 딥러닝 컨볼루션 신경망을 이용한 저해상도 적외선 표적 분류 방법을 제안한다. 제안한 알고리즘은 OKTAL-SE로 생성한 합성영상 클래스 9개 3,723,328개를 분류하였다. 최초 임베디드 추론 가능하도록 파라메터 수가 최소화된 최대풀링 레이어 기준 입력단 8개와 출력단 8개 조합에 비해 강화된 VGG 스타일을 적용한 입력단 4개와 출력단 16개 필터수 조합을 이용하여 연산량은 약 34% 감소시켰으며, 정확도는 약 2.4% 증가시켜 최종 정확도 96.1%을 획득하였다. 추가로 C 코드로 포팅하여 수행시간을 확인하였으며, 줄어든 연산량 만큼 수행 시간이 약 32% 줄어든 것을 확인할 수 있었다.

EDNN based prediction of strength and durability properties of HPC using fibres & copper slag

  • Gupta, Mohit;Raj, Ritu;Sahu, Anil Kumar
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.185-194
    • /
    • 2022
  • For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.

딥러닝 기반 Local Climate Zone 분류체계를 이용한 지표면온도와 도시열섬 분석: 수원시와 대구광역시를 대상으로 (Analysis of Surface Urban Heat Island and Land Surface Temperature Using Deep Learning Based Local Climate Zone Classification: A Case Study of Suwon and Daegu, Korea)

  • 이연수;이시우;임정호;유철희
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1447-1460
    • /
    • 2021
  • 도시화에 따른 인공피복의 증가는 도시지역의 온도가 주변 교외지역보다 높아지는 UHI (Urban Heat Island; UHI) 현상을 야기한다. 국지기후대(Local Climate Zone; LCZ)는 빌딩의 기하학적 구조와 피복특성에 따라 도시를 분류하는 체계로, UHI 분석을 위해 제안되어 현재 다양한 도시기후 연구에 활용되고 있다. 본 연구는 합성곱신경망(Convolutional Neural Network)과 Landsat 8 위성영상을 이용하여 수원시와 대구광역시의 LCZ 분류모델을 구축하였고, LCZ 지도와 Landsat 8 지표면온도(Land Surface Temperature; LST)를 이용하여 도시 구조적 특성에 따른 LST와 Surface UHI (SUHI) 강도를 분석하였다. LCZ 분류모델은 수원시와 대구광역시에 대해 각각 87.9%와 81.7%의 높은 분류 정확도를 보였다. 대구가 수원보다 전반적으로 모든 LCZ 클래스에서 LST가 높게 나타났으며 건물이 밀집할수록, 건물의 높이가 낮을수록 LST가 증가하는 공통점을 보였다. SUHI 강도는 두 도시 모두 여름철에 가장 강한 값을 가지고 봄과 가을에도 일부 LCZ 클래스를 제외하고 양의 SUHI 강도가 나타났지만 겨울에는 다수의 LCZ 클래스에서 음의 값이 나타났다. 이는 UHI가 여름철에 가장 강하게 나타나며, 겨울에는 일부 도시지역이 교외지역보다 더 차가운 현상이 나타나기도 함을 의미한다. 본 연구는 우리나라 UHI 분석에 있어 LCZ 분류체계의 활용가능성을 확인하였고, 향후 도시기후 분석 및 기후변화 대응 전략수립에 있어 도시의 구조적 특성을 고려하는데 기초자료로 활용될 것으로 기대된다.

딥 러닝 기반 실시간 센서 고장 검출 기법 (Timely Sensor Fault Detection Scheme based on Deep Learning)

  • 양재완;이영두;구인수
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.163-169
    • /
    • 2020
  • 최근 4차 산업혁명의 핵심기술인 인공지능, 빅데이터, 사물인터넷의 발전으로 산업 현장에서 가동되는 기계의 자동화 및 무인화에 대한 연구가 활발히 진행되고 있다. 이러한 공정 기계들은 부착된 다양한 센서들로부터 수집된 데이터를 기반으로 제어되고 이를 통해 공정이 관리된다. 만약 센서에 고장이 발생한다면 센서 데이터 이상으로 인해 자동화 기계들이 오작동함으로써 공정 손실 발생뿐만 아니라 인명피해로도 이어질 수 있다. 전문가가 센서의 이상 여부를 주기적으로 확인하여 관리하고 있으나 산업 현장의 여러 가지 환경요인 및 상황으로 인하여 고장점검 시기를 놓치거나 고장을 발견하지 못하여 센서 고장으로 인한 피해를 막지 못하는 경우가 발생하고 있다. 또한 고장이 발생하여도 즉각 감지하지 못함으로써 공정 손실을 더욱 악화시키고 있는 실정이다. 따라서 이러한 돌발적인 센서 고장으로 인한 피해를 막기 위해 자체적으로 임베디드 시스템에서 센서의 고장 유무를 실시간으로 파악하고 빠른 대응을 위해 고장 진단 및 유형을 판별하는 것이 필요하다. 본 논문에서는 대표적인 센서 고장 유형인 erratic fault, hard-over fault, spike fault, stuck fault를 분류하기 위해 딥 뉴럴 네트워크 기반의 고장 진단 시스템을 설계하고 라즈베리 파이를 활용하여 구현하였다. 센서 고장 진단을 위해 구글이 제안한 MobilieNetV2의 Inverted residual block 구조를 사용하여 네트워크를 구성하였다. 본 논문에서 제안하는 방식은 기존 CNN 기법을 사용한 경우보다 메모리 사용량이 줄고 성능이 향상되며, 입력 신호에 대해 구간별로 센서 고장을 분류하여 산업 현장에서 효과적으로 사용될 것으로 기대된다.

RSU 통신 및 딥러닝 기반 최적화 차량 라우팅 시스템 설계 (A design of Optimized Vehicle Routing System(OVRS) based on RSU communication and deep learning)

  • 손수락;이병관;심손권;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.129-137
    • /
    • 2020
  • 현재 자율주행 차량 시장은 3레벨 자율주행 차량의 상용화를 넘어 4레벨 자율주행 차량을 연구, 개발하고 있다. 4레벨 자율주행 차량에서 가장 주목되는 부분은 차량의 안정성이다. 3레벨과 다르게 4레벨의 자율주행 차량은 긴급상황을 차량이 직접 대처해야 하기 때문이다. 본 논문에서는 긴급상황에서의 즉각적인 반응보다는 차량의 목적지가 정해진 순간 사고 가능성이 가장 낮은 경로를 결정하는 Optimized Vehicle Routing System (OVRS)을 제안한다. OVRS는 RSU 통신으로 수집한 도로와 주변 차량 정보를 분석하여 도로의 위험성을 예측하여 주행 중인 차량이 더 안전하고 빠른 길로 주행할 수 있도록 경로를 설정한다. OVRS는 네트워크 라우팅 방식처럼 도로에 있는 RSU를 통하여 도로 상황에 따른 경로 안내를 실행하기 때문에 차량의 안정성을 더욱 높일 수 있다. 실험 결과, OVRS모듈 중 하나인 ASICM의 RPNN은 CNN보다 약 17%, LSTM보다 약 40% 더 좋은 연산 시간을 보였다. 그러나 해당 연구가 PC를 이용한 가상환경에서 실행되었기 때문에, VPDM의 사고 가능성을 실제로 검증하지 못했다. 따라서 향후 사고 데이터 수집으로 인한 VPDM의 정확도 높은 실험과 실제 차량 및 RSU에서 실제 도로를 대상으로 한 실험이 진행되어야 한다.

합성곱 신경망 기반 맨하탄 좌표계 추정 (Estimation of Manhattan Coordinate System using Convolutional Neural Network)

  • 이진우;이현준;김준호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권3호
    • /
    • pp.31-38
    • /
    • 2017
  • 본 논문에서는 도심 영상에 대해 맨하탄 좌표계를 추정하는 합성곱 신경망(Convolutional Neural Network) 기반의 시스템을 제안한다. 도심 영상에서 맨하탄 좌표계를 추정하는 것은 영상 조정, 3차원 장면 복원 등 컴퓨터 그래픽스 및 비전 문제 해결의 기본이 된다. 제안하는 합성곱 신경망은 GoogLeNet[1]을 기반으로 구성한다. 합성곱 신경망을 훈련하기 위해 구글 스트리트 뷰 API로 영상을 수집하고 기존 캘리브레이션 방법으로 맨하탄 좌표계를 계산하여 데이터셋을 생성한다. 장면마다 새롭게 합성곱 신경망을 학습해야하는 PoseNet[2]과 달리, 본 논문에서 제안하는 시스템은 장면의 구조를 학습하여 맨하탄 좌표계를 추정하기 때문에 학습되지 않은 새로운 장면에 대해서도 맨하탄 좌표계를 추정한다. 제안하는 방법은 학습에 참여하지 않은 구글 스트리트 뷰 영상을 검증 데이터로 테스트하였을 때 $3.157^{\circ}$의 중간 오차로 맨하탄 좌표계를 추정하였다. 또한, 동일 검증 데이터에 대해 제안하는 방법이 기존 맨하탄 좌표계 추정 알고리즘[3]보다 더 낮은 중간 오차를 보이는 것을 확인하였다.

비정형 데이터와 딥러닝을 활용한 내수침수 탐지기술 개발 (Development of a method for urban flooding detection using unstructured data and deep learing)

  • 이하늘;김형수;김수전;김동현;김종성
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1233-1242
    • /
    • 2021
  • 본 연구에서는 비정형 데이터인 사진자료를 이용하여 침수의 발생여부를 판단하는 모델을 개발하였다. 침수분류를 모델 개발을 위하여 CNN기반의 VGG16, VGG19을 이용하였다. 모델을 개발하기 위하여 침수사진과 침수가 발생하지 않은 사진을 웹크롤링 방법을 이용하여 사진을 수집하였다. 웹크롤링 방법을 이용하여 수집한 데이터는 노이즈 데이터가 포함되어 있기 때문에 1차적으로 본 연구와 상관없는 데이터는 소거하였으며, 2차적으로 모델 적용을 위하여 224 × 224로 사진 사이즈를 일괄 변경하였다. 또한 사진의 다양성을 위해서 사진의 각도를 변환하여 이미지 증식을 수행하였으며. 최종적으로 침수사진 2,500장과 침수가 발생하지 않은 사진 2,500장을 이용하여 학습을 수행하였다. 모델 평가결과 모델의 평균 분류성능은 97%로 나타났으며. 향후 본 연구결과를 통하여 개발된 모델을 CCTV관제센터 시스템에 탑재한다면 신속하게 침수피해에 대한 대처가 이루어 질 수 있을 것이라 판단된다.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.