• Title/Summary/Keyword: Deep hole

Search Result 188, Processing Time 0.024 seconds

Effect of Dopping Conditions on a-Se Thin-Films : Microstructural and I-V Study (비정질 박막에 대한 도핑 조건의 영향 및 미세구조와 I-V 연구)

  • Park, S.K.;Park, J.K.;Kang, S.S.;Kong, H.K.;Kim, J.S.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.492-496
    • /
    • 2001
  • Due to their better photosensitivity in X-ray, the amorphous selenium based photoreceptor is widely used on the X-ray conversion materials. It was possible to control the charge carrier transport of amorphous selenium by suitably alloying a-Se with other elements(e,g. As, Cl). In this paper, We investigated dopants(As, Cl) composition rate to improve dark resistivity and transport properties of charge carrier in amorphous selenium using by direct X-ray conversion material. Alloying a-Se with As inhibits the recrystallization of a-Se but introduces undesirable deep hole traps. then doping with Cl(in the ppm range) compensates for the deep hole traps. We investigated their composition rate in various doping conditions and then obtained optimum dopant composition rate. The result was Se-As 0.3%-c] 30 ppm and X-ray Sensitivity was 0.57 pC/$pixel{\cdot}mR$ at $137{\mu}m{\times}137{\mu}m$ Pixel area.

  • PDF

Enhancing VANET Security: Efficient Communication and Wormhole Attack Detection using VDTN Protocol and TD3 Algorithm

  • Vamshi Krishna. K;Ganesh Reddy K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.233-262
    • /
    • 2024
  • Due to the rapid evolution of vehicular ad hoc networks (VANETs), effective communication and security are now essential components in providing secure and reliable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. However, due to their dynamic nature and potential threats, VANETs need to have strong security mechanisms. This paper presents a novel approach to improve VANET security by combining the Vehicular Delay-Tolerant Network (VDTN) protocol with the Deep Reinforcement Learning (DRL) technique known as the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. A store-carry-forward method is used by the VDTN protocol to resolve the problems caused by inconsistent connectivity and disturbances in VANETs. The TD3 algorithm is employed for capturing and detecting Worm Hole Attack (WHA) behaviors in VANETs, thereby enhancing security measures. By combining these components, it is possible to create trustworthy and effective communication channels as well as successfully detect and stop rushing attacks inside the VANET. Extensive evaluations and simulations demonstrate the effectiveness of the proposed approach, enhancing both security and communication efficiency.

Collapse Analysis for Deep Sea Pressure Vessel (심해용 압력용기에 대한 붕괴해석)

  • Shin, Jang-Ryong;Woo, Jong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.82-97
    • /
    • 1999
  • A deep sea vehicle must be designed to ensure its safety under ultra-high pressure circumstances. If a pressure housing of a deepsea vehicle is collapsed by ultra-high pressure, the deepsea vehicle may be lost. The objective of this paper is to introduce a design collapse pressure for the deep sea pressure vessel which is composed of one cylinder and two hemispheres. Especially the collapse pressure of hemispherical shell with a hole at top is analyzed by a variational approach (weighted residual method). And for the purpose of design, the salty factor of collapse pressure is presented which is analyzed by interpolation method.

  • PDF

Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface

  • Gulyayev, V.I.;Andrusenko, E.N.;Shlyun, N.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.427-448
    • /
    • 2014
  • At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.

Low Cost Via-Hole Filling Process Using Powder and Solder (파우더와 솔더를 이용한 저비용 비아홀 채움 공정)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Nam, Jae-Woo;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • This study proposed a noble process to fabricate TSV (Through Silicon Via) structure which has lower cost, shorter production time, and more simple fabrication process than plating method. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process. The via hole was $100{\mu}m$ in diameter and $400{\mu}m$ in depth. A dielectric layer of $SiO_2$ was formed by thermal oxidation on the front side wafer and via hole side wall. An adhesion layer of Ti and a seed layer of Au were deposited. Soldering process was applied to fill the via holes with solder paste and metal powder. When the solder paste was used as via hole metal line, sintering state and electrical properties were excellent. However, electrical connection was poor due to occurrence of many voids. In the case of metal powder, voids were reduced but sintering state and electrical properties were bad. We tried the via hole filling process by using mixing solder paste and metal powder. As a consequence, it was confirmed that mixing rate of solder paste (4) : metal powder (3) was excellent electrical characteristics.

Improving the Endurance Life of Deep Groove Ball Bearings for Automotive Transmission (자동차 변속기용 깊은 홈 볼 베어링의 내구수명 향상)

  • Baek, Hye-Yeon;Pyun, Jung-Min;Lee, Dae-Yong;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.281-286
    • /
    • 2015
  • Automotive transmission systems are assembled with a large number of gears and shafts, and rolling bearings are used to ensure their smooth operation. Gear oil in the gear box contains solid particles such as wear debris from contacting gears and metallic chips. This particle-enriched lubricating oil can cause premature failure of the rolling bearings. Research aimed at improving the service life of these rolling bearings has been confined mainly to design and lubrication of the inner/outer rings and the rolling elements. In this paper, we redesigned the shape of the cage pocket of a deep groove ball bearing to reduce the premature failure due to particle contamination. Test bearings are assembled with this new cage design containing a hole punched in the cage pocket. Endurance tests are carried out using the contaminated lubricating oil with miracle grid as hard particle. The duration and damaged bearing component shapes are compared for two different cages. The B10 life of bearing with new cage is increased by about 66% compared to the conventional cage. This is because the hard particles can be easily discharged through the pocket hole without staying for a long time in the lubrication regions. This greatly decreases abrasive wear and dents on the highly stressed ball bearing surfaces. Therefore, the cage design of this study, containing a pocket hole, can significantly delay the premature failure of rolling bearings and improve the endurance life.

Properties of High-Redshift Dust-Obscured Galaxies Revealed in the ADF-S

  • Kim, Seongjae;Jeong, Woong-Seob;Park, Daeseong;Kim, Minjin;Hwang, Hoseong;Park, Sung-Joon;Ko, Kyeongyeon;Seo, Hyun Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.62.2-62.2
    • /
    • 2019
  • The ADF-S (AKARI Deep Field - South) toward South Ecliptic Pole is one of the deep survey fields designed for the study of Extragalactic Background Light (EBL). The deep extragalactic survey was initiated by AKARI far-infrared deep observations. Other space missions (e.g., Euclid, NISS, SPHEREx) will perform the deep observations in the ADF-S. Based upon the recent optical survey with KMTNet, we can identify the optical counterparts for dusty star-forming galaxies such as ULIRG, DOG, SMG. Among them, the Dust-Obscured Galaxies (hereafter DOGs with f(24um)/f(R) > 1,000) in the heavily obscured system are expected to play an important role in the formation of most massive galaxies. We have newly discovered ~100 DOGs in ~12 sq. deg. of the ADF-S from our optical survey with KMTNet. We also confirmed that some of DOGs host the most luminous AGN for their black hole masses through the near-infrared spectroscopic follow-ups. Here, we report the properties of high-z hyperluminous DOGs in the ADF-S.

  • PDF

Integrity test and depth estimation of deep foundations (깊은 기초의 건전도시험과 근입깊이 조사)

  • Jo Churl-hyun;Jung Hyun-key;Lee Tai-sup;Kim Hag-soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.202-216
    • /
    • 1999
  • The deep foundation is frequently used for the infrastructures. Since the quality control of the cast-in-place concrete foundations such as CIP piles and slurry walls is not so easy as that of the ready made PC(prestressed concrete) piles, it is necessary to get the information on the integrity of the concrete of the foundation. The depth estimation of foundations whose depths are unknown is also very important in repair and reinforcement works or in safety inspection and assessment to the big structures. The cross-hole sonic logging(CSL) system and the single channel reflection seismic measurement system were developed to test the integrity of pile. The former is well applied to CIP structures, while the later to all kinds of piles with less accurate result compared to that of CSL. To estimate the depth of the deep foundations, parallel seismics, borehole RADAR, and borehole magnetics can be used.

  • PDF

A Method of Hole Pass-Through Evaluation for EDM Drilling (방전드릴링에서 홀 관통 평가 방법)

  • Lee, Cheol-Soo;Choi, In-Hugh;Heo, Eun-Young;Kim, Jong-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.220-226
    • /
    • 2012
  • The Electric discharge machining (EDM) process is used to minimize the difference between designed feature and machined feature while the most workpiece is removed through the cutting processes. The tiny-deep hole machining and perpendicular wall machining in mold and die are good applications of EDM. Among EDM equipment, the super drill uses the hollowed electrode to eliminate the debris which causes the second discharge with the electrode and degrades the machining quality. Through the hollow, the high pressured discharge oil is supplied to remove the debris together with the spindle rotation. The thin-hollow electrode tends to easily wear out compared to the sold die-sinking electrode and its wear rate is might not allowed to monitor in real time during discharging. Up to now, the wear amount is measured by off line method, which leads machining time to increase because the hole pass-through moment can be check by visual (manually) with the extra tool path. Therefore, this study suggests the attractive method to evaluate the hole pass-through moment in which the gap voltage and z-axis encoder pulse are monitored to predict the moment. The commercial super drill is used to validate the proposed method and the experiment is carried out.

Fabrication of Through-hole Interconnect in Si Wafer for 3D Package (3D 패키지용 관통 전극 형성에 관한 연구)

  • Kim, Dae-Gon;Kim, Jong-Woong;Ha, Sang-Su;Jung, Jae-Pil;Shin, Young-Eui;Moon, Jeong-Hoon;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.64-70
    • /
    • 2006
  • The 3-dimensional (3D) chip stacking technology is a leading technology to realize a high density and high performance system in package (SiP). There are several kinds of methods for chip stacking, but the stacking and interconnection through Cu filled through-hole via is considered to be one of the most advanced stacking technologies. Therefore, we studied the optimum process of through-hole via formation and Cu filling process for Si wafer stacking. Through-hole via was formed with DRIE (Deep Reactive ion Etching) and Cu filling was realized with the electroplating method. The optimized conditions for the via formation were RE coil power of 200 W, etch/passivation cycle time of 6.5 : 6 s and SF6 : C4F8 gas flow rate of 260 : 100 sccm. The reverse pulsed current of 1.5 A/dm2 was the most favorable condition for the Cu electroplating in the via. The Cu filled Si wafer was chemically and mechanically polished (CMP) for the following flip chip bumping technology.