• Title/Summary/Keyword: Deep foundation

Search Result 265, Processing Time 0.025 seconds

Does surgical procedure type impact postoperative pain and recovery in deep inferior epigastric artery perforator flap breast reconstruction?

  • Azizi, Alexander A.;Mohan, Anita T.;Tomouk, Taj;Brickley, Elizabeth B.;Malata, Charles M.
    • Archives of Plastic Surgery
    • /
    • v.47 no.4
    • /
    • pp.324-332
    • /
    • 2020
  • Background The deep inferior epigastric artery perforator (DIEP) flap is the commonest flap used for breast reconstruction after mastectomy. It is performed as a unilateral (based on one [unipedicled] or two [bipedicled] vascular pedicles) or bilateral procedure following unilateral or bilateral mastectomies. No previous studies have comprehensively analyzed analgesia requirements and hospital stay of these three forms of surgical reconstruction. Methods A 7-year retrospective cohort study (2008-2015) of a single-surgeon's DIEP-patients was conducted. Patient-reported pain scores, patient-controlled morphine requirements and recovery times were compared using non-parametric statistics and multivariable regression. Results The study included 135 participants: unilateral unipedicled (n=84), unilateral bipedicled (n=24) and bilateral unipedicled (n=27). Univariate comparison of the three DIEP types showed a significant difference in 12-hour postoperative morphine requirements (P=0.020); bipedicled unilateral patients used significantly less morphine than unipedicled (unilateral) patients at 12 (P=0.005), 24 (P=0.020), and 48 (P=0.046) hours. Multivariable regression comparing these two groups revealed that both reconstruction type and smoking status were significant predictors for 12-hour postoperative morphine usage (P=0.038 and P=0.049, respectively), but only smoking, remained significant at 24 (P=0.010) and 48 (P=0.010) hours. Bilateral reconstruction patients' mean hospital stay was 2 days longer than either unilateral reconstruction (P<0.001). Conclusions Although all three forms of DIEP flap breast reconstruction had similar postoperative pain measures, a novel finding of our study was that bipedicled DIEP flap harvest might be associated with lower early postoperative morphine requirements. Bilateral and bipedicled procedures in appropriate patients might therefore be undertaken without significantly increased pain/morbidity compared to unilateral unipedicled reconstructions.

Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.87-101
    • /
    • 2020
  • The construction of combined pile-raft foundations is considered as the main option in designing foundations in high-rise buildings, especially in soils close to the ground surface which do not have sufficient bearing capacity to withstand building loads. This paper deals with the geotechnical report of the Northern Fereshteh area of Tabriz, Iran, and compares the characteristics of the single pile foundation with the two foundations of pile group and geogrid. Besides, we investigate the effects of five principal parameters including pile diameter and length, the number of geogrid layers, the depth of groundwater level, and pore water pressure on vertical consolidation settlement and pore water pressure changes over a year. This study assessed the mechanism of the failure of the soil under the foundation using numerical analysis as well. Numerical analysis was performed using the two-dimensional finite element PLAXIS software. The results of fifty-four models indicate that the diameter of the pile tip, either as a pile group or as a single pile, did not have a significant effect on the reduction of the consolidation settlement in the soil in the Northern Fereshteh Street region. The optimum length for the pile in the Northern Fereshteh area is 12 meters, which is economically feasible. In addition, the construction of four-layered ten-meter-long geogrids at intervals of 1 meter beneath the deep foundation had a significant preventive impact on the consolidation settlement in clayey soils.

Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures (동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Park, Hong-Gun;Kim, Dong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

Seismic evaluation of soil-foundation-structure interaction: Direct and Cone model

  • Khazaei, Jahangir;Amiri, Azadeh;Khalilpour, Mehrdad
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.251-262
    • /
    • 2017
  • The present research intends to study the effects of the seismic soil-foundation-structure interaction (SFSI) on the dynamic response of various buildings. Two methods including direct and Cone model were studied through 3D finite element method using ABAQUS software. Cone model as an approximate method to consider the SFSI phenomenon was developed and evaluated for both high and low rise buildings. Effect of soil nonlinearity, foundation rigidity and embedment as well as friction coefficient between soil-foundation interfaces during seismic excitation are investigated. Validity and performance of both approaches are evaluated as reference graphs for Cone model and infinite boundary condition, soil nonlinearity and amplification factor for direct method. A series of calculations by DeepSoil for inverse earthquake record modification was conducted. A comparison of the two methods was carried out by root-mean-square-deviation (RMSD) tool for maximum lateral displacement and story shear forces which verifies that Cone model results have good agreement with direct method. It was concluded that Cone method is a convenient, fast and rather accurate method as an approximate way to count for soil media.

Effects of DCM Column Properties in Softground on Stabilities of Underground Roadways (연약지반내 DCM 개량체의 특성이 지하차도의 안정성에 미치는 영향)

  • Ahn, Tae-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.77-84
    • /
    • 2010
  • In planning underground roadway foundation on soft ground, deep cement mixing method (DCM) is employed. The proper mixing ratio using batch test and replacement rates that meet strength criteria are used for deep cement mixing column. Stiffness ratio and distance between deep cement mixing columns (C.T.C) are varied to find out influences on stress, displacement, and differential settlement. The replacement ratios that meet settlement criteria are 10~35%. As stiffness varies, stress reaches at 769.kPa that exceed criteria due to stress concentration when stiffness ratio difference is over 30. Also, when C.T.C is 5 m, stress spreads to soils, so C.T.C need to be considered carefully. The vertical displacement is 0.6~1.56 cm, and angular distortion is 1/909~1/510.

A Study on Shear Strength Prediction for High-Strength Reinforced Concrete Deep Beams Using Strut-and-Tie Model (스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • 이우진;서수연;윤승조;김성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.918-923
    • /
    • 2003
  • Reinforced concrete deep beams are commonly used in many structural applications, including transfer girders, pile caps, foundation walls, and offshore structures. The existing design methods were developed and calibrated using normal strength concrete test results, and their applicability th HSC deep beams must be assessed. For the shear strength prediction of high-strength concrete(HSC) deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the refined model, the formulas the ACI 318-02 Appendix A STM, and Eq. of ACI 318-99 11.8 are compared with the collected experimental data of 74 HSC deep beams with compressive strength in the range of 49-78MPa . It is shown the shear strength of deep beam calculated by those equations are conservative on comparing test results. The comparison shows that the performance of the proposed SSTM is better than the ACI Code approach for all the parameters under comparison. The parameters reviewed include concrete strength, the shear span-depth ratio, and the ratio of horizontal and vertical reinforcement. The proposed SSTM gave a mean predicted to experimental ratio of 0.99, 32 percent higher than ACI 318-02 Code, however with the low coefficient variation.

  • PDF

Effects of construction conditions on deep mixing method for soft ground (연약지반에서 심층혼합처리공법의 개량체 형상변화에 미치는 시공조건)

  • Lee, Kwang-Yeol;Hwang, Jae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.809-814
    • /
    • 2009
  • Deep mixing method has been used for ground improvement and foundation system for embankment, port and harbor foundations, retaining wall, and liquefaction mitigations. It has attractive benefits because it is not only improved strength of soft ground but superior for prevention of settlement. However, the quality controls of improved mass affect to the efficiency of the deep mixing method is not properly established. These effects vary depending upon the construction environments and conditions of agitation in consideration of an agitator. The strength and shape of the improved column are not unique and these are affected by mechanical properties of agitators. In this study, in order to investigate the efficiency of deep mixing method for ground improvement on a soft clay ground, experimental studies are performed considering mechanical properties of agitator; the location of exit-hole of admixtures, an angle of mixing wing and a speed of revolution. The experiments are conducted with the simulated apparatus for deep mixing plant that reduced the scale in 1:8 of the real plant. According to the results, the diameter and shape of improved column mass vary depending on the mechanical properties and operating conditions of agitator. Its quality is better when the exit-hole of admixtures is located in the mixing wing, when an angle of mixing wing is large, and when the speed of revolution is rapid.

  • PDF

Study on Seismic Response of Wall-Slab Apartment Building Sturucture Considering the Stiffnesses of a Foundation-Soil System (기초지반강성을 고려한 벽식구조 아파트의 지진응답에 관한 연구)

  • 김지원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.167-175
    • /
    • 2000
  • Seismic analyses of structures can`t be performed without considering the effect of soil-structure interaction and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show a significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out assuming a rigid base and ignoring the characteristics of a foundation and the properties of the underlying soil. In this study, seismic analyses of apartment buildings of a particular wall-slab structural type were carried out comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Wall-slab type low-rise or mid-height apartment buildings built on the deep soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is too safe but uneconomical to utilize the design spectra of UBC-97 for the seismic analysis of a wall-slab type apartment buildings due to the too conservative design.

  • PDF

Field Application Study for Soil Improvement and Existing Foundation Protection Work by Hi-FA(High performance and Multi functional Agent) (Hi-FA(유동성 및 점성 개질제)를 이용한 지반보강 및 기존 교량기초 보강공법에 대한 실용화 연구)

  • Kim, Myung-Hak;Park, Myoung-Deuk;Yoon, Tae-Gook;Lee, Yong-Jun;Park, Min-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.664-675
    • /
    • 2010
  • Recently environment-friendly construction method is major trend in both domestic and world constrction fields. In this paper High Functional Performance Agent(Hi-FA) which has various improved engineering characteristics different with conventional Portland cement grouting, such as high viscosity, liquidity, void filling ability, early hardening, and separation resistance, was analyzed by field and laboratory test. Also soil improvement and existing deep foundation protection works were performed and analyzed using Hi-FA.

  • PDF

Analysis and Design of Mat Foundation for High -Ribe Buildings (초고층 건물의 전면기초(MAT 기초) 해석 및 설계)

  • Hong, Won-Gi;Hwang, Dae-Jin;Gwon, Jang-Hyeok
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.51-70
    • /
    • 1995
  • Types of foundation of high rise buildings are primarily determined by loads transmitted from super structure, soil bearing capacity and available construction technology, The use of deep foundation of the buildings considered in this study due to the fact that rock of enough bearing capacity is not found down until 90~l00m. When a concentration of high soil pressure must be distributed over the entire building area, when small soft soil areas must be bridged, and when compressible strata are located at a shallow depth, mat foundation may be useful in order to have settlement and differential settlement of variable soils be minimized. The concept of mat foundation will also demonstrate some difficulties of applications if the load bearing demand directly carried down to the load -bearing strata exceeds the load -bearing capacity. This paper introduces both the analysis and design of mat type foundation for high rise buildings as well as the method-ology of modelling of the soil foundation, especially, engineered to redistribute the stress exceeding the soil bearing capacity. This process will result in the wide spread of stresses over the entire building foundation.

  • PDF