• 제목/요약/키워드: Deep foundation

검색결과 265건 처리시간 0.138초

Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline

  • Wang, Tao;Zhou, Guoqing;Wang, Jianzhou;Wang, Di
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.19-28
    • /
    • 2020
  • The spatial variability of geotechnical properties can lead to the uncertainty of settlement for frozen soil foundation around the oil pipeline, and it can affect the stability of permafrost foundation. In this paper, the elastic modulus, cohesion, angle of internal friction and poisson ratio are taken as four independent random fields. A stochastic analysis model for the uncertain settlement characteristic of frozen soil foundation around an oil pipeline is presented. The accuracy of the stochastic analysis model is verified by measured data. Considering the different combinations for the coefficient of variation and scale of fluctuation, the influences of spatial variability of geotechnical properties on uncertain settlement are estimated. The results show that the stochastic effects between elastic modulus, cohesion, angle of internal friction and poisson ratio are obviously different. The deformation parameters have a greater influence on stochastic settlement than the strength parameters. The overall variability of settlement reduces with the increase of horizontal scale of fluctuation and vertical scale of fluctuation. These results can improve our understanding of the influences of spatial variability of geotechnical properties on uncertain settlement and provide a theoretical basis for the reliability analysis of pipeline engineering in permafrost regions.

해상풍력발전용 Foundation에 관한 해외 동향 (The Development of the Foundation of Offshore Wind Turbines)

  • ;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.290-294
    • /
    • 2008
  • Offshore wind farms will contribute significantly to the renewable generation of electricity for the world. The economic development of wind farms depends, however, on development of efficient solutions to a number of technical issues, one of these being the foundations for the offshore turbines. We review here the results of recent research for wind turbine foundations. Also it is a short overview of some of the challenges facing the growth of offshore wind energy foundation technology.

  • PDF

근입깊이에 따른 기초지반의 파괴형태에 관한 실험적 연구 (An Experimental Study on the Failure Mechanism of Foundation with Depth)

  • 봉현규;이상덕;구자갑;김몽각
    • 대한토목학회논문집
    • /
    • 제14권4호
    • /
    • pp.923-932
    • /
    • 1994
  • 얕은기초 및 깊은기초의 지지력에 관한 연구는 여러 분야에서 진전을 이루고 있으며, 다양한 파괴 모델에 따른 지지력 공식들이 발표되었다. 이들 모델들에 대한 얕은기초와 깊은기초의 근입깊이와 기초폭의 비에 따른 구분 방법은 명확하지 않고 지지력계수의 적용에 통일성이 없는 실정이다. 본 실험에서는 탄소봉을 이용하여 평면변형률 상태로 모형지반을 구성하고, 근입깊이에 따른 지반의 파괴 메카니즘과 지지력을 조사하였으며 이로부터 파괴형태에 따른 얕은기초와 깊은기초의 구분을 시도하였다. 또한 여러가지 기존의 기초 파괴형태를 실험으로 검증하였다.

  • PDF

건축구조물에서 현장타설말뚝에 의한 대형기초의 설계 및 시공사례 (A Case Study of a Drilled Shaft Design and Construction of Buildings)

  • 정경환;정동영;김영만;정선태;김동준;김민성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.554-563
    • /
    • 2009
  • The trend of current urban redevelopment and new city development project shows that the superstructure of building is getting larger and higher in consequence of a limited plottage condition. For this reason, it is definitely required to extend pile diameter and install more deep foundation(Mega foundation) to support superstructure. The existing precast pile construction method causes construction-related problems such as increasing quantities, difficulty of storage & transportation material and decreasing design load while construct pile in deep foundation. The drilled shaft method has applied to minimize those problems. This article will be presented construction case study of design & construction of R.C.D method for a large building foundation work on the inside and outside of the country.

  • PDF

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

지진과 세굴의 복합적인 영향을 받는 연속교의 동적거동분석 (Dynamic Analysis of Multi-Span Continuous Bridges under Combined Effects of Earthquake and Local Scour)

  • 김상효;마호성;이상우;심정욱
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.166-173
    • /
    • 2002
  • Seismic bridge failure due to the combined effects of earthquake and local scour are examined in probabilistic perspectives. The seismic responses of multi-span continuous bridge with deep foundations are evaluated with a simplified mechanical model. The probabilistic local scour depths around the deep foundations are estimated by using the Monte Carlo simulation. From the simulation results, it is found that seismic responses of a bridge slightly increase due to the local scour effect. The effect of local scour on the global motion of the continuous bridge is found to be significant under weak seismic intensity. In addition, the duration to regain its original foundation stiffness is critical in estimating the probability of foundation failure under earthquake. Therefore, the duration in recovering the foundation stiffness should be determined reasonably and the safely of the whole bridge system should be evaluated by considering the scour effect.

  • PDF

Study on safety early-warning model of bridge underwater pile foundations

  • Xue-feng Zhang;Chun-xia Song
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.107-116
    • /
    • 2023
  • The health condition of of deep water high pile foundation is vital to the safe operation of bridges. However, pier foundations are vulnerable to damage in deep water due to exposure to sea torrents and corrosive environments over an extended period. In this paper, combined with aninvestigation and analysis of the typical damage characteristics of main pier group pile foundations, we study the safety monitoring and real-time early warning technology of the deep water high pile foundations, we propose an early warning index item and early warning threshold of deep water high pile foundation by utilizing a numerical simulation analysis and referring to domestic and foreign standards and literature. First, we combine the characteristics of structures and draw on more mature evaluation theories and experience in civil engineering-related fields such as dam and bridge engineering. Then, we establish a scheme consisting of a Early Warning Index Systemand evaluation model based on the analytic hierarchy process and constant weight evaluation method and apply the research results to a project based on the Jiashao bridge in Zhejiang province, China. Finally, we verify the rationality and reliability of the Early Warning Index Systemof the Deep Water High Pile Foundations.

Human Action Recognition Using Deep Data: A Fine-Grained Study

  • Rao, D. Surendra;Potturu, Sudharsana Rao;Bhagyaraju, V
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.97-108
    • /
    • 2022
  • The video-assisted human action recognition [1] field is one of the most active ones in computer vision research. Since the depth data [2] obtained by Kinect cameras has more benefits than traditional RGB data, research on human action detection has recently increased because of the Kinect camera. We conducted a systematic study of strategies for recognizing human activity based on deep data in this article. All methods are grouped into deep map tactics and skeleton tactics. A comparison of some of the more traditional strategies is also covered. We then examined the specifics of different depth behavior databases and provided a straightforward distinction between them. We address the advantages and disadvantages of depth and skeleton-based techniques in this discussion.

기초-지반 상호작용을 고려한 교량의 다지점 입력 지진해석 기법 (Seismic Response Analysis Method of Bridge Considering Foundation-Soil Interaction and Multi-support Input Motion)

  • 김효건;최광규;엄영호;권영록
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.284-291
    • /
    • 2006
  • This paper presents a seismic response analysis of bridge structures considering foundation-soil interaction and multi-support input motion. In the earthquake analysis of structures it is usually assumed that the input ground motion is the same at all supports. However, this assumption is not justified for long structures like bridges, because observations have shown the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, analysis for foundation-soil interaction always must be peformed. To consider foundation-soil interaction, soil response analysis is preceded, and after determining the material characteristics of foundation element obtained by foundation-soil interaction analysis at the frequency domain, the seismic response analysis of bridge superstructure with the equivalent spring and damper is performed. Finally, influences of multi-support input motion, which are affected by different soil characteristics, are also considered in this paper.

  • PDF

초고층 건축물 대형기초의 시공 사례 (바레트 말뚝 중심) (A Construction Case of Massive Foundation for High Rise Building (A Case of Barrette Pile))

  • 정경환;정동영;문준배;김동준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.90-104
    • /
    • 2007
  • The trend of current urban redevelopment and new city development project shows that the superstructure of building is getting larger and higher in consequence of a limited plottage condition and the preference of landmark. For this reason, it is definitely required to extend pile diameter and install the pilein deep foundation to support superstructure. The pile method causes construction-related problems such as increasing quantities, difficulty of storage & transportation material and decreasing design load while construct pile in deep foundation. The Bored Pile method has applied to minimize those problems. As above shown, this article will be presented construction case study of Barrette Pile and R.C.D in order to make a counterproposal for the quality control of a large building foundation work.

  • PDF