• 제목/요약/키워드: Deep dose

검색결과 184건 처리시간 0.024초

Deep inspiration breath-hold (DIBH) 적용한 림프절이 포함된 왼편 유방암의 방사선 치료계획에 따른 주변 장기 선량 평가

  • 정다이;강효석;최병준;박상준;이건호;이두상;안민우;전명수
    • 대한방사선치료학회지
    • /
    • 제29권1호
    • /
    • pp.27-35
    • /
    • 2017
  • 목 적: 왼편 유방암 환자의 경우 오른편 유방암 환자보다 심장과 폐 등 정상장기에 불필요한 선량이 일부 조사됨에 따라 부작용이 우려되고 있다. 이를 줄이기 위해 DIBH기법을 시행하고 있다. Conventional Radiation Therapy, Intensity Modulated Radiation Therapy, Volumetric Modulated Arc Therapy의 치료계획 방법에 따라 쇄골상 림프절과 내유 림프절을 포함한 왼편 유방암의 경우 주변 장기의 선량 값을 비교 평가하고자 한다. 대상 및 방법: 왼편 유방암 환자 중 쇄골상 림프절과 내유 림프절을 포함한 환자 8명을 대상으로 Free Breathing과 Deep inspiration breath-hold 기법을 적용하여 각각 CT-Simulation을 시행한다. 획득한 영상을 기반으로 체표윤곽을 그려 95 %$D_{max}$<110 %이 되도록 Conventional Radiation Therapy, Intensity Modulated Radiation Therapy, Volumetric Modulated Arc Therapy방법으로 계획하였다. Conventional Radiation Therapy는 쇄골상 림프절에 1문조사, 유방 부분에 접선 2문조사로 Field in Field 기법을 사용하였다. Intensity Modulated Radiation Therapy는 7개의 조사면으로 구성하였다. Volumetric Modulated Arc Therapy은 회전반경을 $290^{\circ}{\sim}179^{\circ}$으로 한 2 ARC를 이용하여 계획을 수행하였다. Eclipse의 선량체적용적을 참고하여 주변 정상 장기 선량을 분석하였다. 결 과: Deep inspiration breath-hold기법을 적용함으로 심장과 흉벽 사이의 간격은 평균 $1.6{\pm}0.6cm$ 증가하였다. 폐의 평균 선량은 $19.2{\pm}1.0Gy$로 Intensity Modulated Radiation Therapy에서 가장 작은 값이 나타났다. 심장의 $V_{30}(%)$$2.0{\pm}1.9$로 Intensity Modulated Radiation Therapy에서 가장 작은 값이었다. 좌전하행 관상동맥에서는 평균 선량이 $25.4{\pm}5.4Gy$로 Intensity Modulated Radiation Therapy에서 가장 작은 값으로 나타났다. 반대편 유방의 최대선량 값은 Intensity Modulated Radiation Therapy일 때 $29.7{\pm}4.3Gy$로 가장 작은 값으로 나타났다. 결 론: 주변 정상장기 선량의 값을 비교해 보았을 때, Intensity Modulated Radiation Therapy와 Volumetric Modulated Arc Therapy은 치료에 적용할 수 있는 값으로 나타났다. 이 중 Intensity Modulated Radiation Therapy가 적합한 치료계획 방법으로 사료된다.

  • PDF

Selection of Key Radionuclides for P&T Based on Radiological Impact Assessment for the Deep Geological Disposal of Spent PWR/CANDU/DUPIC Fuels

  • Lee, Dong-Won;Chung, Chang-Hyun;Kim, Chang-Lak;Park, Joo-Wan
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.231-240
    • /
    • 2001
  • When it is assumed that PWR, CANDU and DUPIC spent fuels are disposed of in deep geological repository, consequent annual individual doses are calculated, and it is shown that doses meet the regulatory limit. From these results, the hazardous radionuclides applicable to partitioning and transmutation are selected. These selected radionuclides such as Tc-99, Ⅰ-129, Cs-135 and Np-237 are then reviewed in terms of partitioning and transmutation. Separation of I-129, Np-237 and Tc-99 from spent fuels is considered desirable, and transmutation of these radionuclides results in remarkable hazard reduction. However, it is concluded that separation and transmutation of Cs-135 may be ineffective although it is classified into a hazardous radionuclide.

  • PDF

서양의학 독성학의 기본적 개념 및 한약의 $LD_{50}$ (Basic Concepts of Western Medicine Toxicology and $LD_{50}$ in Herbal Drugs)

  • 박영철;이선동;박경식
    • 대한예방한의학회지
    • /
    • 제3권2호
    • /
    • pp.91-100
    • /
    • 1999
  • Today, toxicology is used for many purpose, in many fields. Classification of special toxic effect is related next 4 important principles. 1. The chemical substance must move to target organ or tissue that can induce Biological effect. For this movement, we have to understand the physical-chemical characteristic of substance, and the rout of absorption, metabolism, diffusion and excretion of toxic substance. 2. Every biological effect that induced by chemical substance is not harmful. For example, some specific chemical substance is not harmful in liver enzyme system. 3. The strength of biological effect induced by chemical substance is deep related with dose. Nearly all substance is not effective below the specific dose, and it may toxic to death over the specific dose. It is the 'Dose - response relationship' But carcinogen may toxic whether it is law dose or not. 4. The information that was obtained by experimental animal test, could have to adapt in human biology. Because biological effect of chemical substance could be different in every biological species. In past, drugs was obtained by animal or plants. But in the future, it could be obtained by biochemistry, and genome project. Therefore, in Oriental medicine, research and approach is needed at this time, and have to develop new method of experience in toxic method.

  • PDF

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis

  • Chenggong Yan;Jie Lin;Haixia Li;Jun Xu;Tianjing Zhang;Hao Chen;Henry C. Woodruff;Guangyao Wu;Siqi Zhang;Yikai Xu;Philippe Lambin
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.983-993
    • /
    • 2021
  • Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.

방사선차폐물질(放射線遮蔽物質)에서 발생(發生)하는 측방산란선(側方散亂線)의 측정(測定) (The Relationship of the Filtration and the Side-scattered Dose in Verious Radiation Shielding Materials)

  • 허준;김창균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제7권1호
    • /
    • pp.35-40
    • /
    • 1984
  • Side-direction scattered dose from various radiation shielding materials was measured at 50cm distance from the central beam of primary ray by used several kinds of added filters for a x-ray deep therapeutic installation, the obtained results were as follows : 1. Dose rate by tube voltage was more increased at heavy filtration than light filtration. 2. Scattered doses produced by constant tube voltage in all shielding materials were decreased at heavier filtration. 3. Scattered doses produced by constant shielding material in all tube voltages were decreased at heavier filtration.

  • PDF

Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1439-1448
    • /
    • 2022
  • Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.

의료영상 데이터에서의 피폭선량 표시 방법에 관한 고찰: DICOM 표준을 중심으로 (Study on Radiation Dose in the Medical Image Data Display Method - Focused on the DICOM Standard)

  • 김정수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제38권4호
    • /
    • pp.483-489
    • /
    • 2015
  • 현대의 의료용 방사선 발생장치는 영상을 저장하고 전송하기 위해 의료영상 표준규격으로 Digital image communications in medicine(DICOM)을 채택하고 있다. DICOM 규격에서는 피폭선량 정보 표시를 위해 DICOM dose Structured Report(DICOM dose SR)를 표준으로 제정하여 사용하고 있다. 이와 더불어 DICOM Modality Performed Procedure Step(DIOCM MPPS) 정보와 DICOM tag 정보에서도 부분적인 피폭선량 정보를 표시하고 있다. 본 연구에서는 DICOM과 관련된 피폭선량정보 표시방법에 대해 고찰하고 의료정보 시스템간의 상호연동 테스트를 위한 Integrating the Healthcare Enterprise(IHE)의 Radiation Exposure Monitoring(REM) 프로파일에 대해 살펴보았다. 의료기관에서 의료방사선피폭선량정보에 대한 품질관리를 위해서는 DICOM 정보에서 표시되는 피폭선량 정보형식에 대한 이해가 반드시 수반되어야 하고 장비도입 단계에서 관련 규격에 대한 검토가 이루어져야 한다.

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

방사성물질과 접촉하는 작업의 손·발이 받는 피폭방사선량 평가에 대한 고찰 (A Review of Radiation Field Characteristics and Field Tests for Estimating on the Extremity Dose under Contact Tasks with Radioactive Materials)

  • 김희근;공태영;동경래;최은진
    • 방사선산업학회지
    • /
    • 제11권3호
    • /
    • pp.123-130
    • /
    • 2017
  • Concerns about high radiation exposure to the hands of radiation workers who may contact with radioactive contamination on surfaces in a nuclear power plant (NPP) had been raised, and the Korean regulatory body required the extremity dose estimation during contact tasks with radioactive materials. Korean NPPs conducted field tests to identify the incident radiation to the hands of radiation workers who may contact with radioactive contamination during maintenance periods. The results showed that the radiation fields for contact tasks are dominated by high energy photons. It was also found that the radiation doses to the hands of radiation workers in Korean NPPs were much less than the annual dose limits for extremities. This approach can be applicable to measure and estimate the extremity dose to the hands of medical workers who handle the radioactive materials in a hospital.

소아백혈병의 전신방사선조사 시 조직보상체의 두께변화에 따른 선량평가 (Total Body Irradiation of Childhood Leukemia dose Evaluation due to Changes in the Thickness of the Tissue Compensators)

  • 이동연;김창수;김동현;김정훈
    • 한국콘텐츠학회논문지
    • /
    • 제14권4호
    • /
    • pp.249-255
    • /
    • 2014
  • 전신방사선조사(Total Body Irradiation; TBI)는 백혈병의 치료방법 중의 하나인 조혈모세포 이식법의 전처치로 쓰인다. 2013년 장기이식관리센터 자료에 의하면 조혈모세포이식법의 건수는 계속 늘어나고 있다고 보고되었다. 하지만 현재 TBI 시행하기에 앞서 선량에 대한 평가는 미미한 실정이다. 특히 소아의 경우 방사선감수성이 민감하기 때문에 TBI 시행 전 정확한 선량평가가 시행되어야 할 것으로 판단된다. 이에 본 연구는 TBI 시행 시 사용되는 조직보상체의 두께의 변화에 따라 표면선량과 심부장기선량에 대하여 선량평가를 한 후 가장 이상적인 조건을 찾고자 하였다. 그 결과, 표면선량은 에너지 4 MV, SSD 280 cm, 조직보상체의 두께가 0.5 cm일 때 5.84 mGy/min 으로 가장 높은 수치를 나타내었다. 또한 조직보상체의 두께가 1 cm 이하였을 때 TBI에서 가장 이상적인 선량분포를 나타냄을 알 수 있었다.