• Title/Summary/Keyword: Deep Space Mission

Search Result 42, Processing Time 0.017 seconds

Experimental Evaluation of Ice-regolith Mixture Settlement Caused by Lunar Ice Extraction (달 얼음-월면토 결합 형태에 따른 얼음 추출로 발생하는 침하량 평가)

  • Lee, Jangguen;Gong, Zheng;Jin, Hyunwoo;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.13-19
    • /
    • 2023
  • Lunar ice is a resource available for future human exploration in deep space and long-term extraterrestrial habitat. However, the origin and nature of lunar ice remains unclear. In addition to remote sensing, international space agencies are competitively planning and conducting missions for lunar surface exploration to determine the existence and resource extent of lunar ice. If a sufficient amount of lunar ice is confirmed, its future in-situ resource utilization is expected to be greatly beneficial. However, due to ice extraction, settlement may occur, which should be taken into account from a geotechnical engineering perspective. Herein, experimental investigations of the potential settlement caused by lunar ice extraction were conducted and different textures of lunar ice were simulated. Consequently, it was confirmed that significant settlement occurs even at the initial water content of ~10% in lunar regolith simulant-ice-mixed soil.

AKARI SPECTROSCOPY OF QUASARS AT 2.5 - 5 MICRON

  • Im, Myungshin;Jun, Hyunsung;Kim, Dohyeong;Lee, Hyung Mok;Ohyama, Youichi;Kim, Ji Hoon;Nakagawa, Takao;QSONG Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.163-167
    • /
    • 2017
  • Utilizing a unique capability of AKARI that allows deep spectroscopy at $2.5-5.0{\mu}m$, we performed a spectroscopy study of more than 200 quasars through one of the AKARI mission programs, QSONG (Quasar Spectroscopic Observation with NIR Grism). QSONG targeted 155 high redshift (3.3 < z < 6.42) quasars and 90 low redshift active galactic nuclei (0.002 < z < 0.48). In order to provide black hole mass estimates based on the rest-frame optical spectra, the high redshift part of QSONG is designed to detect the $H{\alpha}$ line and the rest-frame optical spectra of quasars at z > 3.3. The low redshift part of QSONG is geared to uncover the rest-frame $2.5-5.0{\mu}m$ spectral features of active galactic nuclei to gain useful information such as the dust-extinction-free black hole mass estimators based on the Brackett lines and the temperatures of the hot dust torus. We outline the program strategy, and present some of the scientific highlights from QSONG, including the detection of the $H{\alpha}$ line from a quasar at z > 4.5 which indicates a rigorous growth of black holes in the early universe, and the $Br{\beta}$-based black hole mass estimators and the hot dust temperatures (~ 1100 K) of low redshift AGNs.