• Title/Summary/Keyword: Deep Ridge Waveguide

Search Result 7, Processing Time 0.029 seconds

A novel vertical directional coupler with polarization independent very short coupling lengths (편광에 무관한 매우 짧은 결합 길이를 가지는 새로운 수직 방향성 결합기)

  • 정병민;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.359-364
    • /
    • 2003
  • We propose a novel vertical directional coupler with polarization independent very short coupling lengths using the double-sided deep-ridge waveguide structure which could be implemented using double-sided process to polarization insensitive deep-ridge waveguide structures and investigate the effect of various structure parameters on the coupling length. Variation of coupling length for the variation of the waveguide width is smaller than that for the variation of the core thickness. Coupling length decreases as the inner cladding layer thickness and the core thickness decrease. The waveguide width with the polarization independent coupling length decreases as the inner cladding layer thickness decreases for the same core thickness and the core thickness decreases for the same inner cladding layer thickness.

Effect of refractive index difference between core and cladding on the characteristics of a vertical directional coupler using the double sided deep ridge waveguide structure (Double Sided Deep Ridge 도파관 구조를 가지는 수직 방향성 결합기의 코어와 클래딩의 굴절율 차이가 소자의 특성에 미치는 영향)

  • Yun, Jeong-Hyeon;Jeong, Byeong-Min;Kim, Bu-Gyun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.02a
    • /
    • pp.300-301
    • /
    • 2004
  • Effect of refractive index difference between core and cladding on the characteristics of a vertical directional coupler using double sided deep ridge waveguide structure is investigated.

  • PDF

Improvement of extinction ratio of polarization independent very short vertical directional couplers with the double-sided deep-ridge waveguide structure (편광에 관계없이 매우 짧은 결합길이를 가지는 Double-Sided Deep-Ridge 도파관 구조 수직 방향성 결합기의 소멸비 향상)

  • 정병민;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.12-16
    • /
    • 2004
  • We show that the extinction ratio is improved using slight asymmetry in two core refractive indices of polarization independent very short vertical directional couplers with the double-sided deep-ridge (DSDR) waveguide structure. The optimum asymmetry with the maximum extinction ratio and the tolerance of the refractive index of core with the extinction ratio larger 1ha]1 30 ㏈ increase as the thickness of inner cladding layer and the two cores decrease due to the increase of the coupling strength between the two cores. Also, the device length and the tolerance of the device length with the extinction ratio larger than 30 ㏈ decrease as the thickness of the inner cladding layer and the two cores decrease due to the increase of the coupling strength between the two cores. We show that polarization independent vertical directional couplers with the DSDR waveguide structure with the device length less than 100 ${\mu}{\textrm}{m}$ and the extinction ratio larger than 30 ㏈ could be implemented.

Effect of wing width and thickness on the polarization characteristics of vertical directional couplers using the Double-Sided Deep-Ridge waveguide structure (Double-Sided Deep-Ridge 도파관 구조 수직 방향성 결합기의 날개구조부 폭과 두께가 편광 특성에 미치는 영향)

  • 정병민;윤정현;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.293-298
    • /
    • 2004
  • We investigate the effect of the wing width and thickness of a Double-Sided Deep-Ridge(DSDR) vertical directional coupler on the coupling length dependent on the polarization, We have found that the DSDR vertical directional coupler without a wing does not have polarization independent coupling lengths. The variation of the coupling length of TE and TM modes and the difference between the coupling lengths of the two modes are negligible as the wing width increases beyond the specific wing width for the same wing thickness. Thus, we can see that a DSDR vertical directional coupler has a wing width larger than the minimum wing width to obtain the polarization independent coupling length. The minimum wing width increases as the wing thickness increases for the same core thickness and as the core thickness decreases for the same wing width. Also, we have found that the minimum wing thickness is determined by the core thickness and the minimum wing thickness decreases as the core thickness increases.

A Very Short Vertical Directional Coupler Switch with Polarization Independent Very High Extinction Ratios (편광에 관계없이 매우 높은 소멸비와 짧은 길이를 가지는 수직 방향성 결합기 스위치)

  • Jung Byung-Min;Kim Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.503-510
    • /
    • 2004
  • We propose a novel vertical directional coupler switch using a vertical directional coupler with polarization independent coupling lengths employing the doublesided deep-ridge waveguide structure. This switch is composed of a switching operation induced section with symmetric structures and an extinction ratio enhanced section with asymmetric structures. We present design methods and examples for this switch with very short lengths and very high extinction ratios larger than 30 dB for both TE and TM modes in cases of both cross and bar states.

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn;Kim, Ki-Soo;Song, Jung-Ho;Kwon, O-Kyun;Kim, Gyung-Ock
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.339-341
    • /
    • 2010
  • The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.

Stimulated Emission with 349-nm Wavelength in GaN/AlGaN MQWs by Optical Pumping

  • Kim, Sung-Bock;Bae, Sung-Bum;Ko, Young-Ho;Kim, Dong Churl;Nam, Eun-Soo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • The crack-free AlGaN template has been successfully grown by using selective area growth with triangular GaN facet. The triangular GaN stripe structure was obtained by vertical growth rate enhanced mode with low growth temperature of $950^{\circ}C$ and high growth pressure of 500 torr. The lateral growth rate enhanced mode of AlGaN for crack-free and flat surface was also investigated. Low pressure of 30 torr and high V/III ratio of 4400 were favorable for lateral growth of AlGaN. It was confirmed that the $4{\mu}m$ -thick $Al_{0.2}Ga_{0.8}N$ was crack-free over entire 2-inch wafer. The dislocation density of $Al_{0.2}Ga_{0.8}N$ was as low as ${\sim}7.6{\times}10^8/cm^2$ measured by cathodoluminescence. Based on the high quality AlGaN with low dislocation density, the ultraviolet laser diode epitaxy with cladding, waveguide and GaN/AlGaN multiple quantum well (MQW) was grown by metalorganic chemical vapor deposition. The stimulated emission at 349 nm with full width at half maximum of 1.8 nm from the MQW was observed through optical pumping experiment with 193 nm KrF laser. We also have fabricated the deep ridge type ultraviolet laser diode (UV-LD) with $5{\mu}m-wide$ and $700{\mu}m-long$ cavity for electrical properties. The turn on voltage was below 5 V and the resistance was ${\sim}55{\Omega}$ at applied voltage of 10 V. The amplified spontaneous emission spectrum of UV-LD was also observed from pulsed current injection.