• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.033 seconds

Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition (다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가)

  • Ahn, Sung Moo;Lee, Gun Hee;Kim, Se Jin;Bae, So Jeong;Lee, Hyun Ju;Oh, Do Chang;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

Deep Learning-Based, Real-Time, False-Pick Filter for an Onsite Earthquake Early Warning (EEW) System (온사이트 지진조기경보를 위한 딥러닝 기반 실시간 오탐지 제거)

  • Seo, JeongBeom;Lee, JinKoo;Lee, Woodong;Lee, SeokTae;Lee, HoJun;Jeon, Inchan;Park, NamRyoul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.71-81
    • /
    • 2021
  • This paper presents a real-time, false-pick filter based on deep learning to reduce false alarms of an onsite Earthquake Early Warning (EEW) system. Most onsite EEW systems use P-wave to predict S-wave. Therefore, it is essential to properly distinguish P-waves from noises or other seismic phases to avoid false alarms. To reduce false-picks causing false alarms, this study made the EEWNet Part 1 'False-Pick Filter' model based on Convolutional Neural Network (CNN). Specifically, it modified the Pick_FP (Lomax et al.) to generate input data such as the amplitude, velocity, and displacement of three components from 2 seconds ahead and 2 seconds after the P-wave arrival following one-second time steps. This model extracts log-mel power spectrum features from this input data, then classifies P-waves and others using these features. The dataset consisted of 3,189,583 samples: 81,394 samples from event data (727 events in the Korean Peninsula, 103 teleseismic events, and 1,734 events in Taiwan) and 3,108,189 samples from continuous data (recorded by seismic stations in South Korea for 27 months from 2018 to 2020). This model was trained with 1,826,357 samples through balancing, then tested on continuous data samples of the year 2019, filtering more than 99% of strong false-picks that could trigger false alarms. This model was developed as a module for USGS Earthworm and is written in C language to operate with minimal computing resources.

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning (딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템)

  • Min-Je Kim;Dong-Yoon Kim;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • A vibration response-based detection system was used to investigate the adhesive areas of single-lap joints using a nonlinear transformation approach for deep learning. In industry or engineering fields, it is difficult to know the condition of an invisible part within a structure that cannot easily be disassembled and the conditions of adhesive areas of adhesively bonded structures. To address these issues, a detection method was devised that uses nonlinear transformation to determine the adhesive areas of various single-lap-jointed specimens from the vibration response of the reference specimen. In this study, a frequency response function with nonlinear transformation was employed to identify the vibration characteristics, and a virtual spectrogram was used for classification in convolutional neural network based deep learning. Moreover, a vibration experiment, an analytical solution, and a finite-element analysis were performed to verify the developed method with aluminum, carbon fiber composite, and ultra-high-molecular-weight polyethylene specimens.

Deep Learning-based Parcel Detection and Classification System Development Research. (딥러닝 기반 택배 탐지 및 분류 시스템 개발 연구)

  • Son, Seongho;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.323-325
    • /
    • 2021
  • The size of the delivery market in Korea is growing year by year. In recent years, the growth rate has skyrocketed due to the aftermath of the coronavirus. Looking at the domestic delivery market's volume trend in 2020, about 3.4 billion boxes increased by 21% compared to about 2.8 billion boxes last year. In addition, sales amounted to 7.5 trillion won, an increase of about 19% compared to 6.3 trillion won a year earlier. As the delivery market grows, the proportion of courier damage relief is also occurring at a considerable rate. About 33% of 1,000 people have experienced delivery accidents, and about 41% of the week have experienced damage or damage. In this paper, a deep learning model capable of detecting a parcel was created to detect a damaged parcel. A system that can check the performance of this model and detect and classify parcels during the delivery process using a real-time detection camera was studied.

  • PDF

"Where can I buy this?" - Fashion Item Searcher using Instance Segmentation with Mask R-CNN ("이거 어디서 사?" - Mask R-CNN 기반 객체 분할을 활용한 패션 아이템 검색 시스템)

  • Jung, Kyunghee;Choi, Ha nl;Sammy, Y.X.B.;Kim, Hyunsung;Toan, N.D.;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.465-467
    • /
    • 2022
  • Mobile phones have become an essential item nowadays since it provides access to online platform and service fast and easy. Coming to these platforms such as Social Network Service (SNS) for shopping have been a go-to option for many people. However, searching for a specific fashion item in the picture is challenging, where users need to try multiple searches by combining appropriate search keywords. To tackle this problem, we propose a system that could provide immediate access to websites related to fashion items. In the framework, we also propose a deep learning model for an automatic analysis of image contexts using instance segmentation. We use transfer learning by utilizing Deep fashion 2 to maximize our model accuracy. After segmenting all the fashion item objects in the image, the related search information is retrieved when the object is clicked. Furthermore, we successfully deploy our system so that it could be assessable using any web browser. We prove that deep learning could be a promising tool not only for scientific purpose but also applicable to commercial shopping.

Deep Learning-based Rheometer Quality Inspection Model Using Temporal and Spatial Characteristics

  • Jaehyun Park;Yonghun Jang;Bok-Dong Lee;Myung-Sub Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.43-52
    • /
    • 2023
  • Rubber produced by rubber companies is subjected to quality suitability inspection through rheometer test, followed by secondary processing for automobile parts. However, rheometer test is being conducted by humans and has the disadvantage of being very dependent on experts. In order to solve this problem, this paper proposes a deep learning-based rheometer quality inspection system. The proposed system combines LSTM(Long Short-Term Memory) and CNN(Convolutional Neural Network) to take advantage of temporal and spatial characteristics from the rheometer. Next, combination materials of each rubber was used as an auxiliary input to enable quality conformity inspection of various rubber products in one model. The proposed method examined its performance with 30,000 validation datasets. As a result, an F1-score of 0.9940 was achieved on average, and its excellence was proved.

Development of Diagnosis Application for Rail Surface Damage using Image Analysis Techniques (이미지 분석기법을 이용한 레일표면손상 진단애플리케이션 개발)

  • Jung-Youl Choi;Dae-Hui Ahn;Tae-Jun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.511-516
    • /
    • 2024
  • The recently enacted detailed guidelines on the performance evaluation of track facilities presented the necessary requirements regarding the evaluation procedures and implementation methods of track performance evaluation. However, the grade of rail surface damage is determined by external inspection (visual inspection), and there is no choice but to rely only on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we attempted to develop a diagnostic application that can diagnose rail internal defects using rail surface damage. In the field investigation, rail surface damage was investigated and patterns were analyzed. Additionally, in the indoor test, SEM testing was used to construct image data of rail internal damage, and crack length, depth, and angle were quantified. In this study, a deep learning model (Fast R-CNN) using image data constructed from field surveys and indoor tests was applied to the application. A rail surface damage diagnosis application (App) using a deep learning model that can be used on smart devices was developed. We developed a smart diagnosis system for rail surface damage that can be used in future track diagnosis and performance evaluation work.

Configuration and Application of a deep learning-based fall detection system (딥러닝 기반 낙상 감지 시스템의 구성과 적용)

  • Jong-Seok Woo;Lionel Kyenyeneye;Sang-Joong Jung;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • Falling occurs unexpectedly during daily activities, causing many difficulties in life. The purpose of this study was to establish a system for fall detection of high-risk occupations and to verify their effectiveness by collecting data and applying it to predictive models. To this end, a wearable device was configured to detect fall by calculating acceleration signals and azimuths through acceleration sensors and gyro sensors. In addition, the study participants wore the device on their abdomen and measured necessary data from falls-related movements in the process of performing predetermined activities and transmitted it to the computer through a Bluetooth device present in the device. The collected data was processed through filtering, applied to fall detection prediction models based on deep learning algorithms which are 1D CNN, LSTM and CNN-LSTM, and evaluate the results.

A Deep Learning Based Recommender System Using Visual Information (시각 정보를 활용한 딥러닝 기반 추천 시스템)

  • Moon, Hyunsil;Lim, Jinhyuk;Kim, Doyeon;Cho, Yoonho
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.27-44
    • /
    • 2020
  • In order to solve the user's information overload problem, recommender systems infer users' preferences and suggest items that match them. The collaborative filtering (CF), the most successful recommendation algorithm, has been improving performance until recently and applied to various business domains. Visual information, such as book covers, could influence consumers' purchase decision making. However, CF-based recommender systems have rarely considered for visual information. In this study, we propose VizNCS, a CF-based deep learning model that uses visual information as additional information. VizNCS consists of two phases. In the first phase, we build convolutional neural networks (CNN) to extract visual features from image data. In the second phase, we supply the visual features to the NCF model that is known to easy to extend to other information among the deep learning-based recommendation systems. As the results of the performance comparison experiments, VizNCS showed higher performance than the vanilla NCF. We also conducted an additional experiment to see if the visual information affects differently depending on the product category. The result enables us to identify which categories were affected and which were not. We expect VizNCS to improve the recommender system performance and expand the recommender system's data source to visual information.