• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.091 seconds

Deep learning-based custom problem recommendation algorithm to improve learning rate (학습률 향상을 위한 딥러닝 기반 맞춤형 문제 추천 알고리즘)

  • Lim, Min-Ah;Hwang, Seung-Yeon;Kim, Jeong-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.171-176
    • /
    • 2022
  • With the recent development of deep learning technology, the areas of recommendation systems have also diversified. This paper studied algorithms to improve the learning rate and studied the significance results according to words through comparison with the performance characteristics of the Word2Vec model. The problem recommendation algorithm was implemented with the values expressed through the reflection of meaning and similarity test between texts, which are characteristics of the Word2Vec model. Through Word2Vec's learning results, problem recommendations were conducted using text similarity values, and problems with high similarity can be recommended. In the experimental process, it was seen that the accuracy decreased with the quantitative amount of data, and it was confirmed that the larger the amount of data in the data set, the higher the accuracy.

Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography

  • Ji Soo Choi;Boo-Kyung Han;Eun Sook Ko;Jung Min Bae;Eun Young Ko;So Hee Song;Mi-ri Kwon;Jung Hee Shin;Soo Yeon Hahn
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.749-758
    • /
    • 2019
  • Objective: To investigate whether a computer-aided diagnosis (CAD) system based on a deep learning framework (deep learning-based CAD) improves the diagnostic performance of radiologists in differentiating between malignant and benign masses on breast ultrasound (US). Materials and Methods: B-mode US images were prospectively obtained for 253 breast masses (173 benign, 80 malignant) in 226 consecutive patients. Breast mass US findings were retrospectively analyzed by deep learning-based CAD and four radiologists. In predicting malignancy, the CAD results were dichotomized (possibly benign vs. possibly malignant). The radiologists independently assessed Breast Imaging Reporting and Data System final assessments for two datasets (US images alone or with CAD). For each dataset, the radiologists' final assessments were classified as positive (category 4a or higher) and negative (category 3 or lower). The diagnostic performances of the radiologists for the two datasets (US alone vs. US with CAD) were compared Results: When the CAD results were added to the US images, the radiologists showed significant improvement in specificity (range of all radiologists for US alone vs. US with CAD: 72.8-92.5% vs. 82.1-93.1%; p < 0.001), accuracy (77.9-88.9% vs. 86.2-90.9%; p = 0.038), and positive predictive value (PPV) (60.2-83.3% vs. 70.4-85.2%; p = 0.001). However, there were no significant changes in sensitivity (81.3-88.8% vs. 86.3-95.0%; p = 0.120) and negative predictive value (91.4-93.5% vs. 92.9-97.3%; p = 0.259). Conclusion: Deep learning-based CAD could improve radiologists' diagnostic performance by increasing their specificity, accuracy, and PPV in differentiating between malignant and benign masses on breast US.

Comparative Study of Deep Learning Model for Semantic Segmentation of Water System in SAR Images of KOMPSAT-5 (아리랑 5호 위성 영상에서 수계의 의미론적 분할을 위한 딥러닝 모델의 비교 연구)

  • Kim, Min-Ji;Kim, Seung Kyu;Lee, DoHoon;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.206-214
    • /
    • 2022
  • The way to measure the extent of damage from floods and droughts is to identify changes in the extent of water systems. In order to effectively grasp this at a glance, satellite images are used. KOMPSAT-5 uses Synthetic Aperture Radar (SAR) to capture images regardless of weather conditions such as clouds and rain. In this paper, various deep learning models are applied to perform semantic segmentation of the water system in this SAR image and the performance is compared. The models used are U-net, V-Net, U2-Net, UNet 3+, PSPNet, Deeplab-V3, Deeplab-V3+ and PAN. In addition, performance comparison was performed when the data was augmented by applying elastic deformation to the existing SAR image dataset. As a result, without data augmentation, U-Net was the best with IoU of 97.25% and pixel accuracy of 98.53%. In case of data augmentation, Deeplab-V3 showed IoU of 95.15% and V-Net showed the best pixel accuracy of 96.86%.

Development of Disabled Parking System Using Deep Learning Model (딥러닝 모델을 적용한 장애인 주차구역 단속시스템의 개발)

  • Lee, Jiwon;Lee, Dongjin;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.175-177
    • /
    • 2021
  • The parking area for the disabled is a parking facility for the pedestrian disabled and is a parking space for securing pedestrian safety passage for the disabled. However, due to the lack of social awareness of areas for the disabled, the use of parking areas is restricted, and violations such as illegal parking and obstruction of parking are increasing every year. Therefore, in this study, we propose a system to crack down on illegal parking in handicapped parking areas using the YOLOv5 model, a deep learning object recognition model to improve parking interference within parking spaces.

  • PDF

Experimental and numerical investigation of RC frames strengthened with a hybrid seismic retrofit system

  • Luat, Nguyen-Vu;Lee, Hongseok;Shin, Jiuk;Park, Ji-Hun;Ahn, Tae-Sang;Lee, Kihak
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.563-577
    • /
    • 2022
  • This paper presents experimental and numerical investigations of a new seismic enhancement method for existing reinforced concrete (RC) frames by using an external sub-structure, the hybrid seismic retrofit method (HSRM) system. This retrofit system is an H-shaped frame bolt-connected to an existing RC frame with an infilled-concrete layer between their gaps. Two RC frames were built, one with and one without HSRM, and tested under cyclic loading. The experimental findings showed that the retrofitted RC frame was superior to the non-retrofitted specimen in terms of initial stiffness, peak load, and energy dissipation capacity. A numerical simulation using a commercial program was employed for verification with the experiments. The results obtained from the simulations were consistent with those from the experiments, indicating the finite element (FE) models can simulate the seismic behaviors of bare RC frame and retrofitted RC frame using HSRM.

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform

Deep Learning-based Approach for Classification of Tribological Time Series Data for Hand Creams (딥러닝을 이용한 핸드크림의 마찰 시계열 데이터 분류)

  • Kim, Ji Won;Lee, You Min;Han, Shawn;Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • The sensory stimulation of a cosmetic product has been deemed to be an ancillary aspect until a decade ago. That point of view has drastically changed on different levels in just a decade. Nowadays cosmetic formulators should unavoidably meet the needs of consumers who want sensory satisfaction, although they do not have much time for new product development. The selection of new products from candidate products largely depend on the panel of human sensory experts. As new product development cycle time decreases, the formulators wanted to find systematic tools that are required to filter candidate products into a short list. Traditional statistical analysis on most physical property tests for the products including tribology tests and rheology tests, do not give any sound foundation for filtering candidate products. In this paper, we suggest a deep learning-based analysis method to identify hand cream products by raw electric signals from tribological sliding test. We compare the result of the deep learning-based method using raw data as input with the results of several machine learning-based analysis methods using manually extracted features as input. Among them, ResNet that is a deep learning model proved to be the best method to identify hand cream used in the test. According to our search in the scientific reported papers, this is the first attempt for predicting test cosmetic product with only raw time-series friction data without any manual feature extraction. Automatic product identification capability without manually extracted features can be used to narrow down the list of the newly developed candidate products.

Noise Canceler Based on Deep Learning Using Discrete Wavelet Transform (이산 Wavelet 변환을 이용한 딥러닝 기반 잡음제거기)

  • Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1103-1108
    • /
    • 2023
  • In this paper, we propose a new algorithm for attenuating the background noises in acoustic signal. This algorithm improves the noise attenuation performance by using the FNN(: Full-connected Neural Network) deep learning algorithm instead of the existing adaptive filter after wavelet transform. After wavelet transforming the input signal for each short-time period, noise is removed from a single input audio signal containing noise by using a 1024-1024-512-neuron FNN deep learning model. This transforms the time-domain voice signal into the time-frequency domain so that the noise characteristics are well expressed, and effectively predicts voice in a noisy environment through supervised learning using the conversion parameter of the pure voice signal for the conversion parameter. In order to verify the performance of the noise reduction system proposed in this study, a simulation program using Tensorflow and Keras libraries was written and a simulation was performed. As a result of the experiment, the proposed deep learning algorithm improved Mean Square Error (MSE) by 30% compared to the case of using the existing adaptive filter and by 20% compared to the case of using the STFT(: Short-Time Fourier Transform) transform effect was obtained.

Design of Deep Learning-based Tourism Recommendation System Based on Perceived Value and Behavior in Intelligent Cloud Environment (지능형 클라우드 환경에서 지각된 가치 및 행동의도를 적용한 딥러닝 기반의 관광추천시스템 설계)

  • Moon, Seok-Jae;Yoo, Kyoung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.473-483
    • /
    • 2020
  • This paper proposes a tourism recommendation system in intelligent cloud environment using information of tourist behavior applied with perceived value. This proposed system applied tourist information and empirical analysis information that reflected the perceptual value of tourists in their behavior to the tourism recommendation system using wide and deep learning technology. This proposal system was applied to the tourism recommendation system by collecting and analyzing various tourist information that can be collected and analyzing the values that tourists were usually aware of and the intentions of people's behavior. It provides empirical information by analyzing and mapping the association of tourism information, perceived value and behavior to tourism platforms in various fields that have been used. In addition, the tourism recommendation system using wide and deep learning technology, which can achieve both memorization and generalization in one model by learning linear model components and neural only components together, and the method of pipeline operation was presented. As a result of applying wide and deep learning model, the recommendation system presented in this paper showed that the app subscription rate on the visiting page of the tourism-related app store increased by 3.9% compared to the control group, and the other 1% group applied a model using only the same variables and only the deep side of the neural network structure, resulting in a 1% increase in subscription rate compared to the model using only the deep side. In addition, by measuring the area (AUC) below the receiver operating characteristic curve for the dataset, offline AUC was also derived that the wide-and-deep learning model was somewhat higher, but more influential in online traffic.

Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems (블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축)

  • Jang, Jiwon;An, Hyojoon;Lee, Jong-Han;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.80-86
    • /
    • 2019
  • As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.