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Effect of a Deep Learning Framework-Based Computer-
Aided Diagnosis System on the Diagnostic Performance 
of Radiologists in Differentiating between Malignant 
and Benign Masses on Breast Ultrasonography
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Objective: To investigate whether a computer-aided diagnosis (CAD) system based on a deep learning framework (deep 
learning-based CAD) improves the diagnostic performance of radiologists in differentiating between malignant and benign 
masses on breast ultrasound (US). 
Materials and Methods: B-mode US images were prospectively obtained for 253 breast masses (173 benign, 80 malignant) 
in 226 consecutive patients. Breast mass US findings were retrospectively analyzed by deep learning-based CAD and four 
radiologists. In predicting malignancy, the CAD results were dichotomized (possibly benign vs. possibly malignant). The 
radiologists independently assessed Breast Imaging Reporting and Data System final assessments for two datasets (US 
images alone or with CAD). For each dataset, the radiologists’ final assessments were classified as positive (category 4a or 
higher) and negative (category 3 or lower). The diagnostic performances of the radiologists for the two datasets (US alone 
vs. US with CAD) were compared
Results: When the CAD results were added to the US images, the radiologists showed significant improvement in specificity 
(range of all radiologists for US alone vs. US with CAD: 72.8–92.5% vs. 82.1–93.1%; p < 0.001), accuracy (77.9–88.9% vs. 
86.2–90.9%; p = 0.038), and positive predictive value (PPV) (60.2–83.3% vs. 70.4–85.2%; p = 0.001). However, there were 
no significant changes in sensitivity (81.3–88.8% vs. 86.3–95.0%; p = 0.120) and negative predictive value (91.4–93.5% 
vs. 92.9–97.3%; p = 0.259).
Conclusion: Deep learning-based CAD could improve radiologists’ diagnostic performance by increasing their specificity, 
accuracy, and PPV in differentiating between malignant and benign masses on breast US.
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INTRODUCTION

Ultrasound (US) is an important non-radiating imaging 
method for the detection and characterization of breast 
masses, which is well tolerated by patients and easily 
integrated into interventional procedures for patient 
treatment (1-4). However, breast US has an inherent 
limitation of being operator dependent, which means 
that differences between operators in their knowledge 
and understanding of various breast US techniques lead 
to interobserver variability in the diagnosis of breast 
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masses (3, 5). The Breast Imaging Reporting and Data 
System (BI-RADS) for breast US counteracts these 
limitations by providing standardized terms that describe 
breast mass features and assessments as well as further 
recommendations for breast masses (6). Moreover, the 
BI-RADS has been proven to be an effective system in 
differentiating between benign and malignant masses (7, 8). 
However, many BI-RADS US descriptors are found in both 
malignant and benign masses, and this issue is especially 
common with category 4 masses. Thus, category 4 breast 
masses have a wide range of malignancy risk (3–94%) (6, 9), 
and their classification into subcategories 4a, 4b, and 4c is 
poorly reproducible among radiologists (10). To date, there 
has been no specific US descriptor that accurately predicts 
the risk of malignancy in breast masses (10, 11). 

Computer-aided diagnosis (CAD) is a computerized 
procedure that provides a second objective opinion to assist 
radiologists’ image interpretation and diagnosis (12). To 
increase diagnostic accuracy and decrease interobserver 
variability, CAD systems for breast US have been applied to 
differentiate between malignant and benign masses (13-
17). Previous studies have shown that several breast US 
CAD systems had excellent diagnostic performance with a 
receiver operating characteristic (ROC) area under the curve 
(AUC) of approximately 0.9 for differentiating between 
benign and malignant masses (13, 14, 16). Moreover, 
these systems decreased interobserver variability in biopsy 
recommendations (15). These studies used conventional 
CAD systems developed by individual research teams. 
Conventional CAD processes consist of feature extraction, 
selection, and classification (18-21). When adjusting the 
overall performance of conventional CAD, the most important 
issue is effective feature extraction, which can potentially 
alleviate the burden of feature selection and classification 
(19, 21). However, the extraction of meaningful features is 
a complex and time-consuming task requiring many image 
processing steps (21), which makes fine-tuning the overall 
performance of conventional CAD more difficult. 

Currently, deep learning techniques are considered to 
be the most advanced technology for image classification 
(22, 23). The main benefit of deep learning techniques 
is that they reduce the burden of feature selection and 
classification by generating a set of transformation 
functions and image features directly from the data (21). 
Deep learning techniques have been applied in radiology 
with promising results (24-26). A recent study applied deep 
learning techniques to CAD for breast lesions on US as well 

as lung nodules on computed tomography, and showed that 
CAD with deep learning techniques (deep learning-based 
CAD) outperforms conventional CAD (27). However, no study 
has yet evaluated the effect of deep learning-based CAD on 
the decision processes of radiologists for diagnosing breast 
masses. 

Recently, deep learning-based CAD for breast US 
(S-DetectTM for Breast in RS80A; Samsung Medison Co., 
Ltd., Seoul, Korea) has become commercially available 
(21). Therefore, the purpose of this study was to 
investigate whether deep learning-based CAD could improve 
radiologists’ diagnostic performance in differentiating 
between malignant and benign masses on breast US. 

MATERIALS AND METHODS

Participants and Breast Masses 	
This study was approved by the Institutional Review 

Board of Samsung Medical Center. Written informed consent 
was obtained from all participants regarding the use of their 
medical information for research purposes. Women who were 
referred for breast US for diagnostic purposes were recruited 
from the Samsung Medical Center (Seoul, Korea) between 
January and December 2015. Eligible patients were women 
aged ≥ 20 years with breast masses detected by US. Women 
who had masses without definite final diagnoses were 
excluded. This study included 816 patients with 1043 breast 
masses, and their US images were used to build a database. 

From the database, 790 masses were randomly selected 
to construct datasets for training the deep learning-based 
CAD system (21). Thus, 253 remaining breast masses (80 
malignant, 173 benign) from 226 patients were enrolled 
in this study. The median age of these patients was 47 
years (interquartile range [IQR], 42.0–53.5 years). Their US 
images were used to construct datasets for image analysis. 
One hundred ninety-nine patients had one breast mass, and 
27 patients had two breast masses. 

The final diagnosis for each mass was based on the 
histopathologic results of US-guided biopsy (n = 48), 
surgery (n = 99), or typical imaging findings only if they 
showed stability on follow-up imaging (n = 106) (Table 1). 
The mean follow-up duration was 21.5 months (range, 17–
28 months). BI-RADS category 3 masses with insufficient 
follow-up were excluded from the study population. 

US Examination 
Three board-certified radiologists with more than eight 
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years of experience in breast imaging were involved in 
image acquisition. US images were obtained using an RS80A 
system (Samsung Medison Co., Ltd.) with a 3–12-MHz linear 
high-frequency transducer. Radiologists performed bilateral 
whole breast B-mode US, and obtained three directional 
(i.e., transverse, longitudinal, and radial) static images 
showing the most suspicious features for each mass. For 
CAD analysis, video clips were subsequently recorded and 
it included the area of the entire mass and surrounding 
normal breast tissue. Video clips were recorded in one 
direction starting at one end of the mass and ending at 
the other end. Without considering other imaging findings, 
the radiologists independently assessed the BI-RADS final 
category based on the B-mode US findings (6). Biopsies 
were performed on masses assessed as BI-RADS category 4a 
or higher (n = 105), category 3 masses with palpable mass 
(n = 11), and masses increasing in size (n = 5). Moreover, 
biopsies were performed on category 3 or 2 masses upon 
patient request (n = 26). 

US-guided core needle biopsy was performed with at least 
four passes using a 14-gauge automated biopsy gun (Acecut; 
TSK Laboratory, Soja, Japan). US-guided vacuum-assisted 
biopsy was performed with an 8- or 11-gauge needle 
(Mammotome; Devicor Medical, Cincinnati, OH, USA). 

Image Analysis by the Deep Learning-Based CAD System 
and Radiologists

For CAD analysis, the three radiologists who performed 
US data acquisition retrospectively reviewed the video clips 
for each mass. They chose representative static images 
(i.e., transverse and longitudinal or radial and anti-radial) 
showing the most suspicious features and identified the 
location of the mass. On the chosen static image, a two-
dimensional region of interest (ROI) was automatically 
drawn along the mass margin by the deep learning-based 
CAD system based on the GoogLeNet Convolutionary Neural 
Network (S-DetectTM for Breast [High Accuracy Mode] in 
RS80A) (21) (Supplementary Materials, in the online-
only Data Supplement). Moreover, when the automatically 
generated ROI was considered inaccurate by a radiologist, 
it was manually adjusted (Fig. 1). Based on the given ROI, 
the deep learning-based CAD system automatically analyzed 
the US features and provided a final assessment of the 
mass displayed on the screen. CAD final assessments were 
divided into two categories, “possibly benign” or “possibly 
malignant.”

Image analysis was independently performed by four 
radiologists who had not performed the US examination. 
Two radiologists (11 years and 3 years) were experienced 
in breast imaging, and the other two radiologists were 

Table 1. Characteristics of Overall 253 Breast Masses
Characteristics Benign (n = 173) Malignant (n = 80) P

Age of patients (years) 44.0 (40.0–51.0) 51.5 (46.0–61.0) < 0.001
B-mode US

Size (cm) 1.0 (0.7–1.3) 1.7 (1.2–2.5) < 0.001
Pathologic diagnosis -

Fibroadenoma 43 (24.8) -
Fibrocystic change 6 (3.4) -
Intraductal papilloma 6 (3.4) -
Phyllodes tumor 5 (2.9) -
Stromal fibrosis 2 (1.2) -
Fibroadenomatoid mastopathy 2 (1.2) -
Adenosis 2 (1.2) -
Lobular carcinoma in situ 1 (0.6) -
Cyst* 1 (0.6) -
N/A† 105 (60.7)
Invasive ductal carcinoma - 67 (83.7)
Ductal carcinoma in situ - 9 (11.3)
Invasive lobular carcinoma - 3 (3.7)
Invasive papillary carcinoma - 1 (1.3)

Numeric data are presented as median (interquartile range). Non-numeric data are presented as number of lesions (percentage). *One 
cyst was diagnosed based on typical ultrasonographic features, without biopsy, †Benign mass assessed by Breast Imaging Reporting and 
Data System 2 or 3, and all with stability on follow-up US for at least 1 year. N/A = not available, US = ultrasound
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in training with less than one year of breast imaging 
experience.

In clinical practice, radiologists first perform B-mode 
US and then apply CAD to masses detected by B-mode US. 
Thus, two sequential reading sessions similar to actual 
practice were performed. First, the radiologists interpreted 
each mass with static B-mode US images, which were 
also used to derive the CAD results, alone and recorded 
its BI-RADS final assessment category (6). During the 
second reading session, the radiologists interpreted 
each mass by considering B-mode US images and their 
associated CAD results together. During this session, the 
radiologists subjectively recorded the category of each 
mass again, while considering prior category information 
from the first reading session. During the reading sessions, 
the radiologists were blinded to patient names, ages, 
identification numbers, other imaging modality findings, 
histopathological diagnoses, and clinical information. 

Data and Statistical Analysis
Age and the mass size measured at US were compared 

between malignant and benign groups using the Mann-
Whitney U test. To analyze the diagnostic performances 
of the radiologists and deep learning-based CAD for 
differentiating malignant from benign masses, the final 
assessments of the radiologists were categorized into 

positive (category 4a or higher) and negative (category 
3 or lower) for each dataset. The deep learning-based 
CAD results were also categorized into positive (possibly 
malignant) and negative (possibly benign). The sensitivities, 
specificities, accuracies, positive predictive values (PPVs), 
and negative predictive values (NPVs) of the radiologists for 
the two datasets (US images alone or with the CAD results) 
and deep learning-based CAD were calculated based on the 
final breast mass diagnoses. 

To investigate the effect of deep learning-based CAD on 
the radiologists’ diagnostic performance, the corresponding 
diagnostic values of each radiologist for the two datasets (US 
images alone or with the CAD results) were compared using 
McNemar’s, chi-square, and Bennett’s tests (28). Statistical 
differences in the diagnostic values of the experienced 
radiologists (readers 1 and 2), training radiologists (readers 
3 and 4), and all radiologists (readers 1–4) between the two 
datasets were further analyzed by a generalized estimating 
equations approach (29).

Moreover, to evaluate changes in the radiologists’ decision 
making regarding the final BI-RADS category for predicting 
malignancy risk, an ROC curve analysis was performed using 
the seven-point BI-RADS rating score (i.e., 1, 2, 3, 4a, 4b, 
4c, or 5). The ROC AUCs for radiologists were calculated, and 
the readers’ AUCs for the two datasets (US images alone or 
with the CAD results) were compared using a nonparametric 

Fig. 1. 24-year-old woman diagnosed with fibroadenoma using US-guided biopsy.
A. Transverse B-mode US image shows 15-mm oval hypoechoic mass (arrows). B. After radiologist clicked on center point of mass on US image 
shown, two-dimensional region of interest (green line) was automatically drawn along mass margin through deep learning-based CAD. Following 
this, deep learning-based CAD analyzed US features of mass according to BI-RADS lexicon and displayed final assessment of “possibly benign” 
on screen. During first reading session (US images alone), two readers classified mass as BI-RADS category 4a because they assessed that margin 
of mass was angular (right arrow in A), whereas other two readers did not and classified mass as category 3. During second reading session (US 
images with CAD), two readers who previously classified mass as category 4a reassessed it as category 3, whereas two readers who previously 
classified it as category 3 did not change their classifications. BI-RADS = Breast Imaging Reporting and Data System, CAD = computer-aided 
diagnosis, US = ultrasound

A B
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approach (30). For BI-RADS category 4a or higher, biopsy 
is performed. Thus, to evaluate changes in the radiologists’ 
management decisions after CAD application, the total 
number of cases with management decision changes (i.e., 
biopsy or follow-up) of each reader was calculated (31). 

Interobserver agreement between the four radiologists 
regarding the final assessments (positive or negative) was 
also evaluated for the two datasets using κ statistics for 
each dataset. The κ values were interpreted as follows: 
≤ 0.20, slight agreement; 0.21–0.40, fair agreement; 
0.41–0.60, moderate agreement; 0.61–0.80, substantial 
agreement; and 0.81–1.00, excellent agreement (32). 
Analysis was performed using SAS version 9.4 (SAS 
Institute, Cary, NC, USA). Statistical significance was 
accepted when p values were less than 0.05.

RESULTS

The median diameter of all of the breast masses at US 
was 1.1 cm (IQR, 0.8–1.7 cm). Patients diagnosed with 
malignant masses were significantly older than those 
with benign masses (p < 0.001). The median size of the 
malignant masses was significantly larger than that of the 
benign masses (p < 0.001) (Table 1). 

The diagnostic performances of deep learning-based 
CAD and the radiologists for the two datasets (US images 
alone or with CAD) in differentiating malignant from 
benign masses are summarized in Table 2. The sensitivity, 
specificity, accuracy, PPV, and NPV of deep learning-
based CAD were 85.0%, 95.4%, 92.1%, 89.5%, and 
93.2%, respectively. Each radiologist had diagnostic 
performance changes when the deep learning-based CAD 
results were added to the US images. When the CAD results 
were combined with the US images, the two experienced 
radiologists and one of the training radiologists (readers 
1–3) had significantly higher specificities, accuracies, and 
PPVs compared with those for the US images alone (range 
of readers 1–3 for US images alone vs. US images with CAD: 
specificity, 72.8–83.2% vs. 82.1–93.1% [p < 0.001, p = 
0.006, and p = 0.014 for readers 1, 2, and 3, respectively]; 
accuracy, 77.9–84.2% vs. 86.2–90.9% [p < 0.001, p = 0.046, 
and p = 0.045]; and PPV, 60.2–70.4% vs. 71.0–85.2% [p < 
0.001, p = 0.003, and p = 0.004]). When the sensitivities 
and NPVs of these readers were compared between the two 
datasets, readers 2 and 3 also showed higher, but non-
significant, sensitivities and NPVs for the combination of 
the CAD results and US images compared with those for the Ta
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US images alone (range of readers 2 and 3 for US images 
alone vs. US images with CAD: sensitivity, 86.3–88.8% vs. 
90.0–95.0%; and NPV, 92.9–93.5% vs. 95.1–97.3%; all p > 
0.05). Moreover, reader 1 had a similar sensitivity and NPV 
(US images alone vs. US images with CAD: sensitivity, 88.8% 
vs. 86.3%; NPV 93.3% vs. 93.6%; all p > 0.05). The other 
training radiologist (reader 4) had no significant differences 
in all of the diagnostic values when the CAD results were 
added to the US images (p > 0.05). The experienced 
radiologists (readers 1 and 2) had higher specificities (†p < 
0.001), accuracies (†p < 0.001), and PPVs (†p < 0.001) for 
the US images with CAD compared with those for the US 
images alone. However, the training radiologists (readers 
3 and 4) had higher sensitivities (‡p = 0.040) and NPVs 
(‡p = 0.045) for the US images with CAD compared with 
those for the US images alone. In a comparative analysis of 
overall radiologist performance between the two datasets, 
the radiologists showed significantly higher specificity (*p 
< 0.001), accuracy (*p = 0.038), and PPV (*p = 0.001) 
values for the combination of the CAD results and US images 
compared with those for the US images alone (Fig. 1, Table 2).

In predicting malignancy risk with the BI-RADS categories, 
the radiologists’ AUCs for the US images with CAD (range, 
0.914–0.951) were significantly higher than those for the US 
images alone (0.884–0.919; p < 0.001) (Fig. 2). 

Regarding radiologist management decision changes, 
deep learning-based CAD led to biopsy decisions being 

correctly changed to follow-up decisions for a mean of 
10.1% (17.5/173) of the benign masses; however, follow-up 
decisions were incorrectly changed to biopsy decisions for 
a mean of 2.5% (4.3/173) of the benign masses (Table 3). 
In the malignant masses, follow-up decisions were correctly 
changed to biopsy decisions in a mean of 5.6% (4.5/80) 
of the masses (Fig. 3); however, biopsy decisions were 
incorrectly changed to follow-up decisions in a mean of 2.5% 
(2.0/80) of the masses (Fig. 4). 

For diagnosing malignant breast masses with US images 
alone, the four readers showed moderate to substantial 
agreement. When the CAD results were added to the US 
images, all of the readers showed substantial agreement 
(Table 4).

		

Fig. 2. ROC curves for radiologists for two datasets (US images alone vs. US images with CAD) based on probability of malignancy 
risk. When deep learning-based CAD results were added to US, the readers’ AUCs (right; range, 0.914–0.951) were significantly higher than those for US 
images alone (left; range, 0.884–0.919; p < 0.001). AUC = area under curve, ROC = receiver operating characteristic
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Table. 3 Changes in Radiologists’ Decision Making for Biopsy 
Recommendations When Deep Learning-Based CAD Results 
Were Added to US

Radiologists
Benign (n = 173) Malignant (n = 80)

FU to Bx Bx to FU FU to Bx Bx to FU
Reader 1 0 35 2 4
Reader 2 2 14 4 1
Reader 3 4 16 7 2
Reader 4 11 5 5 1
Mean ± standard 
  deviation 

4.3 ± 4.8 17.5 ± 12.6 4.5 ± 2.1 2.0 ± 1.4

Data are numbers of masses. Bx = biopsy, FU = follow-up
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DISCUSSION

To our knowledge, few studies have investigated the 
effect of deep learning-based CAD on the decision-making 
process of radiologists diagnosing breast masses. For 
differentiating malignant from benign masses, we found 
that adding deep learning-based CAD results to B-mode US 
images significantly improved the specificities, accuracies, 
and PPVs of three out of four radiologists without losing 
sensitivity and NPV. However, the reduced impact on the 
sensitivity and NPV may be due to the radiologists’ high 

sensitivity (81.3–88.8%) and NPV (91.4–93.5%) with 
US images alone. In addition, deep learning-based CAD 
significantly increased the AUCs of all of the radiologists 
for predicting malignancy risk with the BI-RADS categories. 
The overall results suggest that deep learning-based CAD 
can improve the performance of radiologists for diagnosing 
breast masses on breast US. Our results are in agreement 
with previous studies using CAD systems developed by 
individual research teams (13, 14, 16, 27). Unlike these 
studies, we used a commercially available deep learning-
based CAD system. Therefore, we believe that our results 

Fig. 3. 50-year-old woman diagnosed with ductal carcinoma in situ using US-guided biopsy and surgical excision.
A. Transverse B-mode US image shows 13-mm oval mass with slightly heterogeneous echo pattern (arrows). B. Deep learning-based CAD analyzed 
US features of mass (green line) and displayed final assessment of “possibly malignant” on screen. During first reading session (US images alone), 
all four readers classified mass as BI-RADS category 3. During second reading session (US images with CAD), three of four readers changed their 
assessment to category 4a.

A B

Fig. 4. 48-year-old woman diagnosed with invasive ductal carcinoma using US-guided biopsy and surgical excision.
A. Transverse B-mode US image shows 19-mm isoechoic mass (arrows). B. Deep learning-based CAD analyzed US features of mass (green line) 
and displayed final assessment of “possibly benign” on screen. During first reading session (US images alone), mass was classified as BI-RADS 
category 4b by one reader, category 4a by another reader, and category 3 by other two readers. During second reading session (US images 
with CAD), reader who previously classified mass as category 4b reassessed it as category 4a, whereas reader who classified it as category 4a 
reassessed it as category 3. Two readers who classified mass as category 3 did not change their classifications.

A B
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are of clinical value because our CAD system is directly 
applicable to clinical practice. 

Prior to this study, we anticipated that the CAD effects 
might be minimal for experienced radiologists compared 
with training radiologists. However, the diagnostic 
performance of the experienced radiologists significantly 
improved after the application of deep learning-based CAD, 
whereas the diagnostic performance of only one of the 
training radiologists improved. Considering the relatively 
high specificity (92.5%) of the other training radiologist 
(reader 4) with US images alone, increasing the specificity 
with deep learning-based CAD would be insignificant to this 
reader’s performance. Consequently, our results suggest that 
deep learning-based CAD can improve the performances of 
experienced and inexperienced radiologists by increasing 
specificity. In addition, CAD improved the interobserver 
agreement for the final assessments of the radiologists 
differentiating between malignant and benign masses, 
which indicates that CAD may provide radiologists with 
greater consistency when using breast US for diagnosis and 
management. 

After the application of deep learning-based CAD, 
we found that the majority of the masses for which 
management decisions were changed were initially assessed 
as BI-RADS category 3 or 4a. However, management 
decisions did not change with typical benign (category 2) 
or moderate- to high-suspicion (category 4c or 5) masses. 
These findings indicate that deep learning-based CAD can 
improve diagnostic performance by leading radiologists to 
make correct biopsy decisions in cases where it is difficult 
to determine whether to perform a biopsy for BI-RADS 3 
or 4a masses. Therefore, we believe that the commercially 
available deep learning-based CAD system used in our 
study can be an adjunctive tool similar to shear-wave 

elastography (SWE). SWE has been used as an ancillary 
tool to reduce the number of benign biopsies by further 
discriminating between category 3 or 4a masses detected 
by US (33, 34). In addition, by decreasing false-positive 
(10.1%, 17.5/173) and increasing true-positive (5.6%, 
4.5/80) biopsies, deep learning-based CAD led to correct 
management decision changes by the radiologists. However, 
for malignant masses, incorrect decision changes from 
biopsy to follow-up occurred at a mean of 2.5% (2.0/80). 
Therefore, radiologists should be aware of this possibility 
when applying CAD in clinical practice.

This study has several limitations. First, the radiologists 
selected a representative image and confirmed a deep 
learning-based CAD ROI, which means that the CAD results 
may have interobserver variability due to differences in 
the observed features between the representative images. 
However, in a recent study by Sultan et al. (35), the 
differences in US BI-RADS features between different 
observations did not change conventional CAD diagnostic 
performance for differentiating between breast masses due 
to continual retraining. Considering this study as well as 
the widespread use of the US BI-RADS lexicon for breast 
imaging, we think that if radiologists who are familiar 
with the US BI-RADS use our deep learning-based CAD, 
the CAD results between radiologists will not vary much. 
Second, non-mass lesions (e.g., architectural distortion, 
calcifications not associated with the mass) were excluded 
from our analysis because their margins were not clearly 
distinguishable from normal breast tissue, which made it 
difficult to confirm non-mass lesion ROIs for CAD. Therefore, 
our results are not directly applicable to the diagnosis 
of non-mass lesions detected by breast US. Finally, we 
potentially included benign or typically benign masses that 
did not undergo biopsy. However, for such masses, follow-up 

Table 4. Changes in Interobserver Agreement among Radiologists’ Final Assessments when Deep Learning-Based CAD Results Were 
Added to US
Reading Modes Reader 1 Reader 2 Reader 3 Reader 4

US alone
Reader 1 – 0.663 (0.571–0.755) 0.538 (0.434–0.643) 0.546 (0.447–0.645)
Reader 2 0.663 (0.571–0.755) – 0.563 (0.461–0.666) 0.706 (0.616–0.796)
Reader 3 0.538 (0.434–0.643) 0.563 (0.461–0.666) – 0.556 (0.456–0.656)
Reader 4 0.546 (0.447–0.645) 0.706 (0.616–0.796) 0.556 (0.456–0.656) –

US with CAD
Reader 1 – 0.788 (0.707–0.868) 0.632 (0.536–0.728) 0.760 (0.675–0.845)
Reader 2 0.788 (0.707–0.868) – 0.718 (0.631–0.805) 0.783 (0.702–0.863)
Reader 3 0.632 (0.536–0.728) 0.718 (0.631–0.805) – 0.743 (0.659–0.827)
Reader 4 0.760 (0.675–0.845) 0.783 (0.702–0.863) 0.743 (0.659–0.827) –
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US is generally recommended without biopsy (6). Moreover, 
all of these masses were stable or decreased in size during 
follow-up.

In conclusion, the diagnostic performance of deep 
learning-based CAD is higher than that of radiologists 
in differentiating between malignant and benign masses 
on breast US. When the CAD results were added to the 
US images, the radiologists showed improvement in their 
specificity, accuracy, and PPV without significant changes 
in their sensitivity and NPV. The use of deep learning-based 
CAD may improve the diagnostic performance of radiologists 
by increasing their specificity, accuracy, and PPV.
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