• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.035 seconds

Enhancement of concrete crack detection using U-Net

  • Molaka Maruthi;Lee, Dong Eun;Kim Bubryur
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.152-159
    • /
    • 2024
  • Cracks in structural materials present a critical challenge to infrastructure safety and long-term durability. Timely and precise crack detection is essential for proactive maintenance and the prevention of catastrophic structural failures. This study introduces an innovative approach to tackle this issue using U-Net deep learning architecture. The primary objective of the intended research is to explore the potential of U-Net in enhancing the precision and efficiency of crack detection across various concrete crack detection under various environmental conditions. Commencing with the assembling by a comprehensive dataset featuring diverse images of concrete cracks, optimizing crack visibility and facilitating feature extraction through advanced image processing techniques. A wide range of concrete crack images were collected and used advanced techniques to enhance their visibility. The U-Net model, well recognized for its proficiency in image segmentation tasks, is implemented to achieve precise segmentation and localization of concrete cracks. In terms of accuracy, our research attests to a substantial advancement in automated of 95% across all tested concrete materials, surpassing traditional manual inspection methods. The accuracy extends to detecting cracks of varying sizes, orientations, and challenging lighting conditions, underlining the systems robustness and reliability. The reliability of the proposed model is measured using performance metrics such as, precision(93%), Recall(96%), and F1-score(94%). For validation, the model was tested on a different set of data and confirmed an accuracy of 94%. The results shows that the system consistently performs well, even with different concrete types and lighting conditions. With real-time monitoring capabilities, the system ensures the prompt detection of cracks as they emerge, holding significant potential for reducing risks associated with structural damage and achieving substantial cost savings.

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.

Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes (누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템)

  • Taelin Yang;Jinho Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, interest in artificial intelligence has increased due to the development of artificial intelligence fields such as ChatGPT and self-driving cars. However, there are still many unknown elements in training process of artificial intelligence, so that optimizing the model requires more time and effort than it needs. Therefore, there is a need for a tool or methodology that can analyze the weight changes during the training process of artificial intelligence and help out understatnding those changes. In this research, I propose a visualization system which helps people to understand the accumulated weight changes. The system calculates the weights for each training period to accumulates weight changes and stores accumulated weight changes to plot them in 3D space. This research will allow us to explore different aspect of artificial intelligence learning process, such as understanding how the model get trained and providing us an indicator on which hyperparameters should be changed for better performance. These attempts are expected to explore better in artificial intelligence learning process that is still considered as unknown and contribute to the development and application of artificial intelligence models.

Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base (지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구)

  • Kim, JaeHun;Lee, Myungjin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.43-61
    • /
    • 2019
  • Development of technologies in artificial intelligence has been rapidly increasing with the Fourth Industrial Revolution, and researches related to AI have been actively conducted in a variety of fields such as autonomous vehicles, natural language processing, and robotics. These researches have been focused on solving cognitive problems such as learning and problem solving related to human intelligence from the 1950s. The field of artificial intelligence has achieved more technological advance than ever, due to recent interest in technology and research on various algorithms. The knowledge-based system is a sub-domain of artificial intelligence, and it aims to enable artificial intelligence agents to make decisions by using machine-readable and processible knowledge constructed from complex and informal human knowledge and rules in various fields. A knowledge base is used to optimize information collection, organization, and retrieval, and recently it is used with statistical artificial intelligence such as machine learning. Recently, the purpose of the knowledge base is to express, publish, and share knowledge on the web by describing and connecting web resources such as pages and data. These knowledge bases are used for intelligent processing in various fields of artificial intelligence such as question answering system of the smart speaker. However, building a useful knowledge base is a time-consuming task and still requires a lot of effort of the experts. In recent years, many kinds of research and technologies of knowledge based artificial intelligence use DBpedia that is one of the biggest knowledge base aiming to extract structured content from the various information of Wikipedia. DBpedia contains various information extracted from Wikipedia such as a title, categories, and links, but the most useful knowledge is from infobox of Wikipedia that presents a summary of some unifying aspect created by users. These knowledge are created by the mapping rule between infobox structures and DBpedia ontology schema defined in DBpedia Extraction Framework. In this way, DBpedia can expect high reliability in terms of accuracy of knowledge by using the method of generating knowledge from semi-structured infobox data created by users. However, since only about 50% of all wiki pages contain infobox in Korean Wikipedia, DBpedia has limitations in term of knowledge scalability. This paper proposes a method to extract knowledge from text documents according to the ontology schema using machine learning. In order to demonstrate the appropriateness of this method, we explain a knowledge extraction model according to the DBpedia ontology schema by learning Wikipedia infoboxes. Our knowledge extraction model consists of three steps, document classification as ontology classes, proper sentence classification to extract triples, and value selection and transformation into RDF triple structure. The structure of Wikipedia infobox are defined as infobox templates that provide standardized information across related articles, and DBpedia ontology schema can be mapped these infobox templates. Based on these mapping relations, we classify the input document according to infobox categories which means ontology classes. After determining the classification of the input document, we classify the appropriate sentence according to attributes belonging to the classification. Finally, we extract knowledge from sentences that are classified as appropriate, and we convert knowledge into a form of triples. In order to train models, we generated training data set from Wikipedia dump using a method to add BIO tags to sentences, so we trained about 200 classes and about 2,500 relations for extracting knowledge. Furthermore, we evaluated comparative experiments of CRF and Bi-LSTM-CRF for the knowledge extraction process. Through this proposed process, it is possible to utilize structured knowledge by extracting knowledge according to the ontology schema from text documents. In addition, this methodology can significantly reduce the effort of the experts to construct instances according to the ontology schema.

Damage of Whole Crop Maize in Abnormal Climate Using Machine Learning (이상기상 시 사일리지용 옥수수의 기계학습을 이용한 피해량 산출)

  • Kim, Ji Yung;Choi, Jae Seong;Jo, Hyun Wook;Kim, Moon Ju;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.127-136
    • /
    • 2022
  • This study was conducted to estimate the damage of Whole Crop Maize (WCM) according to abnormal climate using machine learning and present the damage through mapping. The collected WCM data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. Deep Crossing is used for the machine learning model. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The damage was calculated by difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCM data (1978~2017). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization(WMO) standard. The DMYnormal was ranged from 13,845~19,347 kg/ha. The damage of WCM was differed according to region and level of abnormal climate and ranged from -305 to 310, -54 to 89, and -610 to 813 kg/ha bnormal temperature, precipitation, and wind speed, respectively. The maximum damage was 310 kg/ha when the abnormal temperature was +2 level (+1.42 ℃), 89 kg/ha when the abnormal precipitation was -2 level (-0.12 mm) and 813 kg/ha when the abnormal wind speed was -2 level (-1.60 m/s). The damage calculated through the WMO method was presented as an mapping using QGIS. When calculating the damage of WCM due to abnormal climate, there was some blank area because there was no data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).

Data-Driven Approach to Identify Research Topics for Science and Technology Diplomacy (과학외교를 위한 데이터기반의 연구주제선정 방법)

  • Yeo, Woon-Dong;Kim, Seonho;Lee, BangRae;Noh, Kyung-Ran
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.216-227
    • /
    • 2020
  • In science and technology diplomacy, major countries actively utilize their capabilities in science and technology for public diplomacy, especially for promoting diplomatic relations with politically sensitive regions and countries. Recently, with an increase in the influence of science and technology on national development, interest in science and technology diplomacy has increased. So far, science and technology diplomacy has relied on experts to find research topics that are of common interest to both the countries. However, this method has various problems such as the bias arising from the subjective judgment of experts, the attribution of the halo effect to famous researchers, and the use of different criteria for different experts. This paper presents an objective data-based approach to identify and recommend research topics to support science and technology diplomacy without relying on the expert-based approach. The proposed approach is based on big data analysis that uses deep-learning techniques and bibliometric methods. The Scopus database is used to find proper topics for collaborative research between two countries. This approach has been used to support science and technology diplomacy between Korea and Hungary and has raised expectations of policy makers. This paper finally discusses aspects that should be focused on to improve the system in the future.

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

Image based Fire Detection using Convolutional Neural Network (CNN을 활용한 영상 기반의 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1649-1656
    • /
    • 2016
  • Performance of the existing sensor-based fire detection system is limited according to factors in the environment surrounding the sensor. A number of image-based fire detection systems were introduced in order to solve these problem. But such a system can generate a false alarm for objects similar in appearance to fire due to algorithm that directly defines the characteristics of a flame. Also fir detection systems using movement between video flames cannot operate correctly as intended in an environment in which the network is unstable. In this paper, we propose an image-based fire detection method using CNN (Convolutional Neural Network). In this method, firstly we extract fire candidate region using color information from video frame input and then detect fire using trained CNN. Also, we show that the performance is significantly improved compared to the detection rate and missing rate found in previous studies.