• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.028 seconds

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

Sentiment Prediction using Emotion and Context Information in Unstructured Documents (비정형 문서에서 감정과 상황 정보를 이용한 감성 예측)

  • Kim, Jin-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.40-46
    • /
    • 2020
  • With the development of the Internet, users share their experiences and opinions. Since related keywords are used witho0ut considering information such as the general emotion or genre of an unstructured document such as a movie review, the sensitivity accuracy according to the appropriate emotional situation is impaired. Therefore, we propose a system that predicts emotions based on information such as the genre to which the unstructured document created by users belongs or overall emotions. First, representative keyword related to emotion sets such as Joy, Anger, Fear, and Sadness are extracted from the unstructured document, and the normalized weights of the emotional feature words and information of the unstructured document are trained in a system that combines CNN and LSTM as a training set. Finally, by testing the refined words extracted through movie information, morpheme analyzer and n-gram, emoticons, and emojis, it was shown that the accuracy of emotion prediction using emotions and F-measure were improved. The proposed prediction system can predict sentiment appropriately according to the situation by avoiding the error of judging negative due to the use of sad words in sad movies and scary words in horror movies.

Automatic Post Editing Research (기계번역 사후교정(Automatic Post Editing) 연구)

  • Park, Chan-Jun;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • Machine translation refers to a system where a computer translates a source sentence into a target sentence. There are various subfields of machine translation. APE (Automatic Post Editing) is a subfield of machine translation that produces better translations by editing the output of machine translation systems. In other words, it means the process of correcting errors included in the translations generated by the machine translation system to make proofreading. Rather than changing the machine translation model, this is a research field to improve the translation quality by correcting the result sentence of the machine translation system. Since 2015, APE has been selected for the WMT Shaed Task. and the performance evaluation uses TER (Translation Error Rate). Due to this, various studies on the APE model have been published recently, and this paper deals with the latest research trends in the field of APE.

A Design of Estimate-information Filtering System using Artificial Intelligent Technology (인공지능 기술을 활용한 부동산 허위매물 필터링 시스템)

  • Moon, Jeong-Kyung
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.115-120
    • /
    • 2021
  • An O2O-based real estate brokerage web sites or apps are increasing explosively. As a result, the environment has been changed from the existing offline-based real estate brokerage environment to the online-based environment, and consumers are getting very good feelings in terms of time, cost, and convenience. However, behind the convenience of online-based real estate brokerage services, users often suffer time and money damage due to false information or malicious false information. Therefore, in this study, in order to reduce the damage to consumers that may occur in the O2O-based real estate brokerage service, we designed a false property information filtering system that can determine the authenticity of registered property information using artificial intelligence technology. Through the proposed research method, it was shown that not only the authenticity of the property information registered in the online real estate service can be determined, but also the temporal and financial damage of consumers can be reduced.

A motion classification and retrieval system in baseball sports video using Convolutional Neural Network model

  • Park, Jun-Young;Kim, Jae-Seung;Woo, Yong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper, we propose a method to effectively search by automatically classifying scenes in which specific images such as pitching or swing appear in baseball game images using a CNN(Convolution Neural Network) model. In addition, we propose a video scene search system that links the classification results of specific motions and game records. In order to test the efficiency of the proposed system, an experiment was conducted to classify the Korean professional baseball game videos from 2018 to 2019 by specific scenes. In an experiment to classify pitching scenes in baseball game images, the accuracy was about 90% for each game. And in the video scene search experiment linking the game record by extracting the scoreboard included in the game video, the accuracy was about 80% for each game. It is expected that the results of this study can be used effectively to establish strategies for improving performance by systematically analyzing past game images in Korean professional baseball games.

Development of an intelligent edge computing device equipped with on-device AI vision model (온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발)

  • Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we design a lightweight embedded device that can support intelligent edge computing, and show that the device quickly detects an object in an image input from a camera device in real time. The proposed system can be applied to environments without pre-installed infrastructure, such as an intelligent video control system for industrial sites or military areas, or video security systems mounted on autonomous vehicles such as drones. The On-Device AI(Artificial intelligence) technology is increasingly required for the widespread application of intelligent vision recognition systems. Computing offloading from an image data acquisition device to a nearby edge device enables fast service with less network and system resources than AI services performed in the cloud. In addition, it is expected to be safely applied to various industries as it can reduce the attack surface vulnerable to various hacking attacks and minimize the disclosure of sensitive data.

Comparison of Deep Learning Models for Judging Business Card Image Rotation (명함 이미지 회전 판단을 위한 딥러닝 모델 비교)

  • Ji-Hoon, Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • A smart business card printing system that automatically prints business cards requested by customers online is being activated. What matters is that the business card submitted by the customer to the system may be abnormal. This paper deals with the problem of determining whether the image of a business card has been abnormally rotated by adopting artificial intelligence technology. It is assumed that the business card rotates 0 degrees, 90 degrees, 180 degrees, and 270 degrees. Experiments were conducted by applying existing VGG, ResNet, and DenseNet artificial neural networks without designing special artificial neural networks, and they were able to distinguish image rotation with an accuracy of about 97%. DenseNet161 showed 97.9% accuracy and ResNet34 also showed 97.2% precision. This illustrates that if the problem is simple, it can produce sufficiently good results even if the neural network is not a complex one.

Comparison of System Call Sequence Embedding Approaches for Anomaly Detection (이상 탐지를 위한 시스템콜 시퀀스 임베딩 접근 방식 비교)

  • Lee, Keun-Seop;Park, Kyungseon;Kim, Kangseok
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.47-53
    • /
    • 2022
  • Recently, with the change of the intelligent security paradigm, study to apply various information generated from various information security systems to AI-based anomaly detection is increasing. Therefore, in this study, in order to convert log-like time series data into a vector, which is a numerical feature, the CBOW and Skip-gram inference methods of deep learning-based Word2Vec model and statistical method based on the coincidence frequency were used to transform the published ADFA system call data. In relation to this, an experiment was carried out through conversion into various embedding vectors considering the dimension of vector, the length of sequence, and the window size. In addition, the performance of the embedding methods used as well as the detection performance were compared and evaluated through GRU-based anomaly detection model using vectors generated by the embedding model as an input. Compared to the statistical model, it was confirmed that the Skip-gram maintains more stable performance without biasing a specific window size or sequence length, and is more effective in making each event of sequence data into an embedding vector.

Video-based Inventory Management and Theft Prevention for Unmanned Stores (재고 관리 및 도난 방지를 위한 영상분석 기반 무인 매장 관리 시스템)

  • Soojin Lee;Jiyoung Moon;Haein Park;Jiheon Kang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2024
  • This paper presents an unmanned store management system that can provide inventory management and theft prevention for displayed products using a small camera that can monitor the shelves of sold products in small and medium-sized stores. This system is a service solution that integrates object recognition, real-time communication, security management, access management, and mobile authentication. The proposed system uses a custom YOLOv5-x model to recognize objects on the display, measure quantities in real time, and support real-time data communication with servers through Raspberry Pie. In addition, the number of objects in the database and the object recognition results are compared to detect suspected theft situations and provide burial images at the time of theft. The proposed unmanned store solution is expected to improve the efficiency of small and medium-sized unmanned store operations and contribute to responding to theft.

Research on a system for determining the timing of shipment based on artificial intelligence-based crop maturity checks and consideration of fluctuations in agricultural product market prices (인공지능 기반 농작물 성숙도 체크와 농산물 시장가격 변동을 고려한 출하시기 결정시스템 연구)

  • LI YU;NamHo Kim
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • This study aims to develop an integrated agricultural distribution network management system to improve the quality, profit, and decision-making efficiency of agricultural products. We adopt two key techniques: crop maturity detection based on the YOLOX target detection algorithm and market price prediction based on the Prophet model. By training the target detection model, it was possible to accurately identify crops of various maturity stages, thereby optimizing the shipment timing. At the same time, by collecting historical market price data and predicting prices using the Prophet model, we provided reliable price trend information to shipping decision makers. According to the results of the study, it was found that the performance of the model considering the holiday factor was significantly superior to that of the model that did not, proving that the effect of the holiday on the price was strong. The system provides strong tools and decision support to farmers and agricultural distribution managers, helping them make smart decisions during various seasons and holidays. In addition, it is possible to optimize the distribution network of agricultural products and improve the quality and profit of agricultural products.