• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.025 seconds

A Deep Learning System for Emotional Cat Sound Classification and Generation (감정별 고양이 소리 분류 및 생성 딥러닝 시스템)

  • Joo Yong Shim;SungKi Lim;Jong-Kook Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.492-496
    • /
    • 2024
  • Cats are known to express their emotions through a variety of vocalizations during interactions. These sounds reflect their emotional states, making the understanding and interpretation of these sounds crucial for more effective communication. Recent advancements in artificial intelligence has introduced research related to emotion recognition, particularly focusing on the analysis of voice data using deep learning models. Building on this background, the study aims to develop a deep learning system that classifies and generates cat sounds based on their emotional content. The classification model is trained to accurately categorize cat vocalizations by emotion. The sound generation model, which uses deep learning based models such as SampleRNN, is designed to produce cat sounds that reflect specific emotional states. The study finally proposes an integrated system that takes recorded cat vocalizations, classify them by emotion, and generate cat sounds based on user requirements.

The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity (농산물 생산성 향상을 위한 딥러닝 기반 농업 의사결정시스템)

  • Park, Jinuk;Ahn, Heuihak;Lee, ByungKwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.521-530
    • /
    • 2018
  • This paper proposes "The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity" that collects weather information based on location supporting precision agriculture, predicts current crop condition by using the collected information and real time crop data, and notifies a farmer of the result. The system works as follows. The ICM(Information Collection Module) collects weather information based on location supporting precision agriculture. The DRCM(Deep learning based Risk Calculation Module) predicts whether the C, H, N and moisture content of soil are appropriate to grow specific crops according to current weather. The RNM(Risk Notification Module) notifies a farmer of the prediction result based on the DRCM. The proposed system improves the stability because it reduces the accuracy reduction rate as the amount of data increases and is apply the unsupervised learning to the analysis stage compared to the existing system. As a result, the simulation result shows that the ADS improved the success rate of data analysis by about 6%. And the ADS predicts the current crop growth condition accurately, prevents in advance the crop diseases in various environments, and provides the optimized condition for growing crops.

Deep Learning Based 3D Gesture Recognition Using Spatio-Temporal Normalization (시 공간 정규화를 통한 딥 러닝 기반의 3D 제스처 인식)

  • Chae, Ji Hun;Gang, Su Myung;Kim, Hae Sung;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.626-637
    • /
    • 2018
  • Human exchanges information not only through words, but also through body gesture or hand gesture. And they can be used to build effective interfaces in mobile, virtual reality, and augmented reality. The past 2D gesture recognition research had information loss caused by projecting 3D information in 2D. Since the recognition of the gesture in 3D is higher than 2D space in terms of recognition range, the complexity of gesture recognition increases. In this paper, we proposed a real-time gesture recognition deep learning model and application in 3D space using deep learning technique. First, in order to recognize the gesture in the 3D space, the data collection is performed using the unity game engine to construct and acquire data. Second, input vector normalization for learning 3D gesture recognition model is processed based on deep learning. Thirdly, the SELU(Scaled Exponential Linear Unit) function is applied to the neural network's active function for faster learning and better recognition performance. The proposed system is expected to be applicable to various fields such as rehabilitation cares, game applications, and virtual reality.

A Study on Worker Risk Reduction Methods using the Deep Learning Image Processing Technique in the Turning Process (선삭공정에서 딥러닝 영상처리 기법을 이용한 작업자 위험 감소 방안 연구)

  • Bae, Yong Hwan;Lee, Young Tae;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.1-7
    • /
    • 2021
  • The deep learning image processing technique was used to prevent accidents in lathe work caused by worker negligence. During lathe operation, when the chuck is rotated, it is very dangerous if the operator's hand is near the chuck. However, if the chuck is stopped during operation, it is not dangerous for the operator's hand to be in close proximity to the chuck for workpiece measurement, chip removal or tool change. We used YOLO (You Only Look Once), a deep learning image processing program for object detection and classification. Lathe work images such as hand, chuck rotation and chuck stop are used for learning, object detection and classification. As a result of the experiment, object detection and class classification were performed with a success probability of over 80% at a confidence score 0.5. Thus, we conclude that the artificial intelligence deep learning image processing technique can be effective in preventing incidents resulting from worker negligence in future manufacturing systems.

Stress Detection System for Emotional Labor Based On Deep Learning Facial Expression Recognition (감정노동자를 위한 딥러닝 기반의 스트레스 감지시스템의 설계)

  • Og, Yu-Seon;Cho, Woo-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.613-617
    • /
    • 2021
  • According to the growth of the service industry, stresses from emotional labor workers have been emerging as a social problem, thereby so-called the Emotional Labor Protection Act was implemented in 2018. However, insufficient substantial protection systems for emotional workers emphasizes the necessity of a digital stress management system. Thus, in this paper, we suggest a stress detection system for customer service representatives based on deep learning facial expression recognition. This system consists of a real-time face detection module, an emotion classification FER module that deep-learned big data including Korean emotion images, and a monitoring module that only visualizes stress levels. We designed the system to aim to monitor stress and prevent mental illness in emotional workers.

  • PDF

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

Image Reconstruction Based on Deep Learning for the SPIDER Optical Interferometric System

  • Sun, Yan;Liu, Chunling;Ma, Hongliu;Zhang, Wang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.260-269
    • /
    • 2022
  • Segmented planar imaging detector for electro-optical reconnaissance (SPIDER) is an emerging technology for optical imaging. However, this novel detection approach is faced with degraded imaging quality. In this study, a 6 × 6 planar waveguide is used after each lenslet to expand the field of view. The imaging principles of field-plane waveguide structures are described in detail. The local multiple-sampling simulation mode is adopted to process the simulation of the improved imaging system. A novel image-reconstruction algorithm based on deep learning is proposed, which can effectively address the defects in imaging quality that arise during image reconstruction. The proposed algorithm is compared to a conventional algorithm to verify its better reconstruction results. The comparison of different scenarios confirms the suitability of the algorithm to the system in this paper.

Image Reconstruction Method for Photonic Integrated Interferometric Imaging Based on Deep Learning

  • Qianchen Xu;Weijie Chang;Feng Huang;Wang Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.391-398
    • /
    • 2024
  • An image reconstruction algorithm is vital for the image quality of a photonic integrated interferometric imaging (PIII) system. However, image reconstruction algorithms have limitations that always lead to degraded image reconstruction. In this paper, a novel image reconstruction algorithm based on deep learning is proposed. Firstly, the principle of optical signal transmission through the PIII system is investigated. A dataset suitable for image reconstruction of the PIII system is constructed. Key aspects such as model and loss functions are compared and constructed to solve the problem of image blurring and noise influence. By comparing it with other algorithms, the proposed algorithm is verified to have good reconstruction results not only qualitatively but also quantitatively.

Wine Quality Classification with Multilayer Perceptron

  • Agrawal, Garima;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2018
  • This paper is about wine quality classification with multilayer perceptron using the deep neural network. Wine complexity is an issue when predicting the quality. And the deep neural network is considered when using complex dataset. Wine Producers always aim high to get the highest possible quality. They are working on how to achieve the best results with minimum cost and efforts. Deep learning is the possible solution for them. It can help them to understand the pattern and predictions. Although there have been past researchers, which shows how artificial neural network or data mining can be used with different techniques, in this paper, rather not focusing on various techniques, we evaluate how a deep learning model predicts for the quality using two different activation functions. It will help wine producers to decide, how to lead their business with deep learning. Prediction performance could change tremendously with different models and techniques used. There are many factors, which, impact the quality of the wine. Therefore, it is a good idea to use best features for prediction. However, it could also be a good idea to test this dataset without separating these features. It means we use all features so that the system can consider all the feature. In the experiment, due to the limited data set and limited features provided, it was not possible for a system to choose the effective features.