• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.031 seconds

Evaluation of Recurrent Neural Network Variants for Person Re-identification

  • Le, Cuong Vo;Tuan, Nghia Nguyen;Hong, Quan Nguyen;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.193-199
    • /
    • 2017
  • Instead of using only spatial features from a single frame for person re-identification, a combination of spatial and temporal factors boosts the performance of the system. A recurrent neural network (RNN) shows its effectiveness in generating highly discriminative sequence-level human representations. In this work, we implement RNN, three Long Short Term Memory (LSTM) network variants, and Gated Recurrent Unit (GRU) on Caffe deep learning framework, and we then conduct experiments to compare performance in terms of size and accuracy for person re-identification. We propose using GRU for the optimized choice as the experimental results show that the GRU achieves the highest accuracy despite having fewer parameters than the others.

A Study on Conversational Public Administration Service of the Chatbot Based on Artificial Intelligence (인공지능 기반 대화형 공공 행정 챗봇 서비스에 관한 연구)

  • Park, Dong-ah
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1347-1356
    • /
    • 2017
  • Artificial intelligence-based services are expanding into a new industrial revolution. There is artificial intelligence technology applied in real life due to the development of big data and deep learning related technology. And data analysis and intelligent assistant services that integrate information from various fields have also been commercialized. Chatbot with interactive artificial intelligence provide shopping, news or information. Chatbot service, which has begun to be adopted by some public institutions, is now just a first step in the steps. This study summarizes the services and technical analysis of chatbot. and the direction of public administration service chatbot was presented.

Predicting Future Technology Development in the Fusional Aspect of Brain Science and Artificial Intelligence (뇌과학과 인공지능 융합 미래 기술 발전 방향 예측)

  • Yoon, C.W.;Huh, J.D.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Artificial intelligence, which is based on deep learning, is emerging as a fundamental technology that will bring about future social changes. Artificial intelligence technology in IT is an essential intelligent system, and will overcome the performance limit of computing systems, and is expected to be the foundation for the development of computing environment destructively. The development of artificial intelligence technology in developed countries is a direction toward convergence with brain science. In this article, we will look at the prospect of artificial intelligence as the manifestation of imagination, as well as the technology and policy trends of artificial intelligence both at home and abroad, and discuss the direction of future technology development in terms of fusion with brain science.

Korean Entity Recognition System using Bi-directional LSTM-CNN-CRF (Bi-directional LSTM-CNN-CRF를 이용한 한국어 개체명 인식 시스템)

  • Lee, Dong-Yub;Lim, Heui-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.327-329
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식 시스템을 개발하기 위해 딥러닝 기반의 워드 임베딩(word embedding) 자질과 문장의 형태적 특징 및 기구축 사전(lexicon) 기반의 자질 구성 방법을 제안하고, bi-directional LSTM, CNN, CRF과 같은 모델을 이용하여 구성된 자질을 학습하는 방법을 제안한다. 실험 데이터는 2017 국어 정보시스템 경진대회에서 제공한 2016klpNER 데이터를 이용하였다. 실험은 전체 4258 문장 중 학습 데이터 3406 문장, 검증 데이터 426 문장, 테스트 데이터 426 문장으로 데이터를 나누어 실험을 진행하였다. 실험 결과 본 연구에서 제안하는 모델은 BIO 태깅 방식의 개체 청크 단위 성능 평가 결과 98.9%의 테스트 정확도(test accuracy)와 89.4%의 f1-score를 나타냈다.

  • PDF

Brief Overview of Deep Learning based Anomaly Detection for Smart Surveillance System (스마트 관제를 위한 딥러닝 기반 이상행동 기술 동향 분석)

  • Lee, Jiae;Mun, Sungchul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.14-16
    • /
    • 2019
  • 스마트관제 시스템은 딥러닝 서버내 학습된 백본 네트워크 모델이 실시간으로 스트리밍 되는 CCTV 영상으로부터 이상행동 패턴을 선별적으로 탐지하고 관제요원에게 전달하여, 사전에 사건사고를 예방하거나 즉시 대응 체계의 유연한 운영을 가능케하는 시스템이다. 최근 지능형 CCTV(Closed Circuit Television) 서비스가 일부 지역에 선별 관제의 형태로 시범적으로 운영되고 있는 상황이다. 지능형 시범서비스는 공공 영역에서 선별 CCTV 관제의 형태로 이상행동 상황을 즉각 인지하여 사건사고를 예방하거나 피해를 최소화하고자 하는 목적으로 주로 사용되고 있다. 그러나, 범죄 등의 특정 시나리오에만 한정해서도 이상 행동 유형이 너무나 다양하기 때문에 이상행동 영상의 사전분류(Annotation)를 통해 딥러닝 모델을 학습시키는 것이 현실적으로 어려운 상황이다. 따라서 본고에서는 최신 이상 행동 탐지(Anomaly detection) 알고리즘과 응용사례를 분석하여 실제 현장에 적용할 수 있는 현장 중심의 기법을 제안하고자 한다.

  • PDF

Question Answering System that Combines Deep Learning and Information Retrieval (딥러닝과 정보검색을 결합한 질의응답 시스템)

  • Lee, Hyeon-gu;Kim, Harksoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.134-138
    • /
    • 2016
  • 정보의 양이 빠르게 증가함으로 인해 필요한 정보만을 효율적으로 얻기 위한 질의응답 시스템의 중요도가 늘어나고 있다. 그 중에서도 질의 문장에서 주어와 관계를 추출하여 정답을 찾는 지식베이스 기반 질의응답 시스템이 활발히 연구되고 있다. 그러나 기존 지식베이스 기반 질의응답 시스템은 하나의 질의 문장만을 사용하므로 정보가 부족한 단점이 있다. 본 논문에서는 이러한 단점을 해결하고자 정보검색을 통해 질의와 유사한 문장을 찾고 Recurrent Neural Encoder-Decoder에 검색된 문장과 질의를 함께 활용하여 주어와 관계를 찾는 모델을 제안한다. bAbI SimpleQuestions v2 데이터를 이용한 실험에서 제안 모델은 질의만 사용하여 주어와 관계를 찾는 모델보다 좋은 성능(정확도 주어:33.2%, 관계:56.4%)을 보였다.

  • PDF

Korean Entity Recognition System using Bi-directional LSTM-CNN-CRF (Bi-directional LSTM-CNN-CRF를 이용한 한국어 개체명 인식 시스템)

  • Lee, Dong-Yub;Lim, Heui-Seok
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.327-329
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식 시스템을 개발하기 위해 딥러닝 기반의 워드 임베딩(word embedding) 자질과 문장의 형태적 특징 및 기구축 사전(lexicon) 기반의 자질 구성 방법을 제안하고, bi-directional LSTM, CNN, CRF과 같은 모델을 이용하여 구성된 자질을 학습하는 방법을 제안한다. 실험 데이터는 2017 국어 정보시스템 경진대회에서 제공한 2016klpNER 데이터를 이용하였다. 실험은 전체 4258 문장 중 학습 데이터 3406 문장, 검증 데이터 426 문장, 테스트 데이터 426 문장으로 데이터를 나누어 실험을 진행하였다. 실험 결과 본 연구에서 제안하는 모델은 BIO 태깅 방식의 개체 청크 단위 성능 평가 결과 98.9%의 테스트 정확도(test accuracy)와 89.4%의 f1-score를 나타냈다.

  • PDF

Song-lyrics Generation system by Deep Learning (딥러닝 기법을 이용한 노래 가사 생성 시스템)

  • Son, Sung-Hwan;Lee, Hyun-Young;Nam, Gyu-Hyeon;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.570-573
    • /
    • 2018
  • 본 논문에서는 한국 가요 학습 데이터를 노래 가사 마디 단위로 문자열을 역전시키는 형태로 변형하고 LSTM으로 학습하여, 마디 간의 문맥을 고려해 문자열을 생성하는 방법에 대해 제안한다. 그리고 이를 통해 특정 가요 가사와 유사하면서도 다른 가사를 생성하는 것도 가능하다. 문자열의 우측 끝에 위치하면서 마디 간의 문맥을 연결해 주는 서술어, 접속사와 같은 요소를 활용하기 위해 데이터를 변형하여 적용한다. 제안하는 방식으로 생성한 문자열이 단순히 문자열 데이터를 그대로 학습하여 생성하는 것보다 상대적으로 더 자연스러운 문맥으로 생성되는 것을 확인하였다.

  • PDF

Emotion Recognition System based Deep Learning (딥 러닝 기반 감정인식 시스템 개발)

  • Lee, Min Kyu;Kim, Dae Ha;Choi, Dong Yoon;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.16-18
    • /
    • 2017
  • 최근 딥 러닝의 발전으로 얼굴인식뿐만 아니라 더 세부적인 기술인 ID식별, 감정인식 등을 분류할 수 있는 알고리즘이 많이 제안되었다. 하지만 딥 러닝은 방대한 연산량을 처리해야 하기 때문에 실시간으로 영상을 구현하는 것은 한계가 있다. 본 논문은 위와 같은 문제를 개선하기 위하여 얼굴인식은 연산량이 비교적 적은 HOG알고리즘을 적용하여 전처리를 진행한다. 그 이후 ID식별 네트워크인 FaceNet과 EmotiW 2017 Challenge의 논문의 감정인식 네트워크를 Multi-Thread 기술을 적용하여 스레드를 분할 연산을 통하여 실시간으로 영상을 출력하는 알고리즘을 제안한다.

  • PDF

A Design for Movie Recommender System using Embedding and Deep-Learning Technique (임베딩 기법과 딥러닝 기법을 이용한 영화 추천 시스템 설계)

  • Yu, WonHee;Lim, Heuiseok
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.648-649
    • /
    • 2016
  • 일반적으로 협업 핑터랭 기반의 추천 시스템에서는 사용자와 아이템 간의 상호 작용이 희박하게 나타나는 문제 때문에 성능상의 한계점을 가지고 있다. 이 문제는 전통적으로 사용되었던 기계 학습의 입력 특성들이 의미적으로 관계가 없도록, 독립적으로 표현하기 때문이다. 본 논문에서는 임베딩 기법을 이용하여 서로 독립적으로 표현되었던 아이템들을 의미적으로 표현되는 벡터로 바꾸고, 최근 협업 필터링 기반의 추천 시스템으로 많이 사용되는 RNN을 사용하여 모델링한 시스템을 제안한다. 제안된 모델은 최근에 발표된 추천시스템들과 동등하거나 그 이상의 성능을 보일 것으로 기대된다.