• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.03 seconds

Anomaly Detection of Machining Process based on Power Load Analysis (전력 부하 분석을 통한 절삭 공정 이상탐지)

  • Jun Hong Yook;Sungmoon Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.173-180
    • /
    • 2023
  • Smart factory companies are installing various sensors in production facilities and collecting field data. However, there are relatively few companies that actively utilize collected data, academic research using field data is actively underway. This study seeks to develop a model that detects anomalies in the process by analyzing spindle power data from a company that processes shafts used in automobile throttle valves. Since the data collected during machining processing is time series data, the model was developed through unsupervised learning by applying the Holt Winters technique and various deep learning algorithms such as RNN, LSTM, GRU, BiRNN, BiLSTM, and BiGRU. To evaluate each model, the difference between predicted and actual values was compared using MSE and RMSE. The BiLSTM model showed the optimal results based on RMSE. In order to diagnose abnormalities in the developed model, the critical point was set using statistical techniques in consultation with experts in the field and verified. By collecting and preprocessing real-world data and developing a model, this study serves as a case study of utilizing time-series data in small and medium-sized enterprises.

Anti-Reactive Jamming Technology Based on Jamming Utilization

  • Xin Liu;Mingcong Zeng;Yarong Liu;Mei Wang;Xiyu Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2883-2902
    • /
    • 2023
  • Since the existing anti-jamming methods, including intelligent methods, have difficulty against high-speed reactive jamming, we studied a new methodology for jamming utilization instead of avoiding jamming. Different from the existing jamming utilization techniques that harvest energy from the jamming signal as a power supply, our proposed method can take the jamming signal as a favorable factor for frequency detection. Specifically, we design an intelligent differential frequency hopping communication framework (IDFH), which contains two stages of training and communication. We first adopt supervised learning to get the jamming rule during the training stage when the synchronizing sequence is sent. And then, we utilize the jamming rule to improve the frequency detection during the communication stage when the real payload is sent. Simulation results show that the proposed method successfully combated high-speed reactive jamming with different parameters. And the communication performance increases as the power of the jamming signal increase, hence the jamming signal can help users communicate in a low signal-to-noise ratio (SNR) environment.

Convolutional Neural Network Based Plant Leaf Disease Detection

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.107-112
    • /
    • 2024
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.

Artificial Intelligence Plant Doctor: Plant Disease Diagnosis Using GPT4-vision

  • Yoeguang Hue;Jea Hyeoung Kim;Gang Lee;Byungheon Choi;Hyun Sim;Jongbum Jeon;Mun-Il Ahn;Yong Kyu Han;Ki-Tae Kim
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.99-102
    • /
    • 2024
  • Integrated pest management is essential for controlling plant diseases that reduce crop yields. Rapid diagnosis is crucial for effective management in the event of an outbreak to identify the cause and minimize damage. Diagnosis methods range from indirect visual observation, which can be subjective and inaccurate, to machine learning and deep learning predictions that may suffer from biased data. Direct molecular-based methods, while accurate, are complex and time-consuming. However, the development of large multimodal models, like GPT-4, combines image recognition with natural language processing for more accurate diagnostic information. This study introduces GPT-4-based system for diagnosing plant diseases utilizing a detailed knowledge base with 1,420 host plants, 2,462 pathogens, and 37,467 pesticide instances from the official plant disease and pesticide registries of Korea. The AI plant doctor offers interactive advice on diagnosis, control methods, and pesticide use for diseases in Korea and is accessible at https://pdoc.scnu.ac.kr/.

Air quality index prediction using seasonal autoregressive integrated moving average transductive long short-term memory

  • Subramanian Deepan;Murugan Saravanan
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.915-927
    • /
    • 2024
  • We obtain the air quality index (AQI) for a descriptive system aimed to communicate pollution risks to the population. The AQI is calculated based on major air pollutants including O3, CO, SO2, NO, NO2, benzene, and particulate matter PM2.5 that should be continuously balanced in clean air. Air pollution is a major limitation for urbanization and population growth in developing countries. Hence, automated AQI prediction by a deep learning method applied to time series may be advantageous. We use a seasonal autoregressive integrated moving average (SARIMA) model for predicting values reflecting past trends considered as seasonal patterns. In addition, a transductive long short-term memory (TLSTM) model learns dependencies through recurring memory blocks, thus learning long-term dependencies for AQI prediction. Further, the TLSTM increases the accuracy close to test points, which constitute a validation group. AQI prediction results confirm that the proposed SARIMA-TLSTM model achieves a higher accuracy (93%) than an existing convolutional neural network (87.98%), least absolute shrinkage and selection operator model (78%), and generative adversarial network (89.4%).

Enhanced Sign Language Transcription System via Hand Tracking and Pose Estimation

  • Kim, Jung-Ho;Kim, Najoung;Park, Hancheol;Park, Jong C.
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • In this study, we propose a new system for constructing parallel corpora for sign languages, which are generally under-resourced in comparison to spoken languages. In order to achieve scalability and accessibility regarding data collection and corpus construction, our system utilizes deep learning-based techniques and predicts depth information to perform pose estimation on hand information obtainable from video recordings by a single RGB camera. These estimated poses are then transcribed into expressions in SignWriting. We evaluate the accuracy of hand tracking and hand pose estimation modules of our system quantitatively, using the American Sign Language Image Dataset and the American Sign Language Lexicon Video Dataset. The evaluation results show that our transcription system has a high potential to be successfully employed in constructing a sizable sign language corpus using various types of video resources.

Cat Monitoring and Disease Diagnosis System based on Deep Learning (딥러닝 기반의 반려묘 모니터링 및 질병 진단 시스템)

  • Choi, Yoona;Chae, Heechan;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.233-244
    • /
    • 2021
  • Recently, several ICT-based cat studies have produced some successful results, according to academic and industry sources. However, research on the level of simply identifying the cat's condition, such as the behavior and sound classification of cats based on images and sound signals, has yet to be found. In this paper, based on the veterinary scientific knowledge of cats, a practical and academic cat monitoring and disease diagnosis system is proposed to monitor the health status of the cat 24 hours a day by automatically categorizing and analyzing the behavior of the cat with location information using LSTM with a beacon sensor and a raspberry pie that can be built at low cost. Validity of the proposed system is verified through experimentation with cats in actual custody (the accuracy of the cat behavior classification and location identification was 96.3% and 92.7% on average, respectively). Furthermore, a rule-based disease analysis system based on the veterinary knowledge was designed and implemented so that owners can check whether or not the cats have diseases at home (or can be used as an auxiliary tool for diagnosis by a pet veterinarian).

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

Implementation of an Intelligent Video Detection System using Deep Learning in the Manufacturing Process of Tungsten Hexafluoride (딥러닝을 이용한 육불화텅스텐(WF6) 제조 공정의 지능형 영상 감지 시스템 구현)

  • Son, Seung-Yong;Kim, Young Mok;Choi, Doo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.719-726
    • /
    • 2021
  • Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).