본 논문은 지각된 가치가 적용된 관광 행동의도 정보를 이용한 지능형 클라우드 환경에서의 관광추천시스템을 제안한다. 이 제안 시스템은 관광정보와 관광객의 지각적 가치가 행동의도에 반영되는 실증적 분석 정보를 와이드 앤 딥러닝 기술을 이용하여 관광추천시스템에 적용하였다. 본 제안 시스템은 다양하게 수집할 수 있는 관광 정보와 관광객이 평소에 지각하고 있던 가치와 사람의 행동에서 나타나는 의도를 수집 분석하여 관광 추천시스템에 적용하였다. 이는 기존에 활용되던 다양한 분야의 관광플랫폼에 관광 정보, 지각된 가치 및 행동의도에 대한 연관성을 분석하고 매핑하여, 실증적 정보를 제공한다. 그리고 관광정보와 관광객의 지각적 가치가 행동의도에 반영되는 실증적 분석 정보를 선형 모형 구성요소와 신경만 구성요소를 합께 학습하여 한 모형에서 암기 및 일반화 모두를 달성할 수 있는 와이드 앤 딥러닝 기술을 이용한 관광추천 시스템을 제시하였고, 파이프라인 동작 방법을 제시하였다. 본 논문에서 제시한 추천시스템은 와이드 앤 딥러닝 모형을 적용한 결과 관광관련 앱 스토어 방문 페이지 상의 앱 가입률이 대조군 대비 3.9% 향상했고, 다른 1% 그룹에 변수는 동일하고 신경망 구조의 깊은 쪽만 사용한 모형을 적용하여 결과 와이드 앤 딥러닝 모형은 깊은 쪽만 사용한 모형 대비해서 가입률을 1% 증가하였다. 또한, 데이터셋에 대해 수신자 조작 특성 곡선 아래 면적(AUC)을 측정하여, 오프라인 AUC 또한 와이드 앤 딥러닝 모형이 다소 높지만 온라인 트래픽에서 영향력이 더 강하다는 것을 도출하였다.
Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.
서로 다른 특징을 가지는 이미지를 통합하여 작물의 병충해 분류를 위한 심층신경망을 훈련하는 것이 학습 결과에 어떤 영향을 미치는지 확인하고, 심층신경망의 학습 결과를 개선할 수 있는 이미지 통합방법에 대해 실험하였다. 실험을 위해 두 종류의 작물 이미지 공개 데이터가 사용되었다. 하나는 인도의 실제 농장 환경에서 촬영된 작물 이미지이고 다른 하나는 한국의 실험실 환경에서 촬영한 작물 이미지였다. 작물 잎 이미지는 정상인 경우와 4종류의 병충해를 포함하여 5개의 하위 범주로 구성되었다. 심층신경망은 전이학습을 통해 사전 훈련된 VGG16이 특징 추출부에 사용되었고 분류기에는 다층퍼셉트론 구조를 사용하였다. 두 공개 데이터는 세 가지 방법으로 통합되어 심층신경망의 지도학습에 사용되었다. 훈련된 심층신경망은 평가 데이터를 이용해 평가되었다. 실험 결과에 따르면 심층신경망을 실험실 환경에서 촬영한 작물 이미지로 학습한 이후에 실제 농장 환경에서 촬영한 작물 이미지로 재학습하는 경우에 가장 좋은 성능을 보였다. 서로 다른 배경의 두 공공데이터를 혼용하여 사용하면 심층신경망의 학습 결과가 좋지 않았다. 심층신경망의 학습 과정에서 여러 종류의 데이터를 사용하는 방법에 따라 심층신경망의 성능이 달라질 수 있음을 확인하였다.
암종 분류은 현장의 지질학적 또는 지반공학적 특성 파악을 위해 요구되는 매우 기본적인 행위이나 암석의 성인, 지역, 지질학적 이력 특성에 따라 동일 암종이라 하여도 매우 다양한 형태와 색 조성을 보이므로 깊은 지질학적 학식과 경험 없이는 쉬운 일은 아니다. 또한, 다른 여러 분야의 분류 작업에서 딥러닝 영상 처리 기법들이 성공적으로 적용되고 있으며, 지질학적 분류나 평가 분야에서도 딥러닝 기법의 적용에 대한 관심이 증대되고 있다. 따라서, 본 연구에서는 동일 암종임에도 다양한 형태와 색을 갖게 되는 실제 상황을 감안하여, 정확한 자동 암종 분류를 위한 딥러닝 기법의 적용 가능성에 대해 검토하였다. 이러한 기법은 향후에 현장 암종분류 작업을 수행하는 현장 기술자들을 지원할 수 있는 효과적인 툴로 활용 가능할 것이다. 본 연구에서 사용된 딥러닝 알고리즘은 매우 깊은 네트워크 구조로 객체 인식과 분류를 할 수 있는 것으로 잘 알려진 'ResNet' 계열의 딥러닝 알고리즘을 사용하였다. 적용된 딥러닝에서는 10개의 암종에 대한 다양한 암석 이미지들을 학습시켰으며, 학습 시키지 않은 암석 이미지들에 대하여 84% 수준 이상의 암종 분류 정확도를 보였다. 본 결과로 부터 다양한 성인과 지질학적 이력을 갖는 다양한 형태와 색의 암석들도 지질 전문가 수준으로 분류해 낼 수 있는 것으로 파악되었다. 나아가 다양한 지역과 현장에서 수집된 암석의 이미지와 지질학자들의 분류 결과가 학습데이터로 지속적으로 누적이 되어 재학습에 반영된다면 암종분류 성능은 자동으로 향상될 것이다.
본 연구에서는 운전자 별로 생활 중에 이동하는 주행 도로의 특징 및 교통상황이 서로 다르며 운전습관이 상이함을 고려하여, 운전자 혹은 운전자 그룹별 기계학습모형을 구성하고, 학습된 모델을 분석하여 운전자의 주행모드 별 특징을 탐색하여 자율 주행 자동차를 시뮬레이션 하였다. 운전지식을 활용하여 주행조작 전후 센서의 동작 상황에 따라 8종류의 종방향 모드와 4종류 회전모드로 구분하고, 종방향 모드와 회전모드를 결합한 21개의 결합형 주행모드로 세분화 하였다. 주행모드가 레이블 된 시계열 데이터에 대해 딥러닝 지도학습 모델인 RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), Bi-LSTM 모델을 활용하여서 운전자 별 혹은 운전자 그룹별 주행데이터를 학습하고, 학습된 모델을 테스트 데이터 셋에서 주행 모드인식률을 검증하였다. 실험 데이터는 미국 VTTI 기관에서 수집된 22명의 운전자의 1,500개의 실생활 주행 데이터가 사용되었다. 주행 모드 인식에 있어, 데이터 셋에 대해 Bi-LSTM 모델이 RNN, LSTM 모델에 비해 향상된 성능을 보였으며, 최대 93.41%의 주행모드 인식률을 확인하였다.
최근 딥러닝 기반의 객체 검출 및 인식 연구가 발전해가면서 산업 및 실생활에 적용되는 범위가 넓어지고 있다. 건설 분야에도 딥러닝 기반의 시스템이 도입되고 있지만 아직은 미온적이다. 건설 도면에서 자재 산출이 수작업으로 이뤄지고 있어 많은 소요시간과 부정확한 적산 결과로 잘못된 물량산출의 거래가 생길 수 있다. 이를 해결하기 위해서 빠르고 정확한 자동 도면 인식시스템이 필요하다. 따라서 본 논문은 건설도면 내 철강 자재를 검출하고 인식하는 인공지능기반 자동 도면 인식 적산 시스템을 제안한다. 빠른 속도의 YOLOv4 기반에 소형 객체 검출성능을 향상하기 위한 복제 방식의 데이터 증강기법과 공간집중 모듈을 적용하였다. 검출한 철강 자재 영역을 문자 인식한 결과를 토대로 철강 자재를 적산한다. 실험 결과 제안한 방식은 기존 YOLOv4 대비 정확도와 정밀도를 각각 1.8%, 16% 증가시켰다. 제안된 방식의 Precision은 0.938, Recall은 1, AP0.5는 99.4%, AP0.5:0.95 68.8%의 향상된 결과를 얻었다. 문자 인식은 기존 데이터를 사용한 인식률 75.6%에 비해 건설도면에 사용되는 폰트에 맞는 데이터 세트를 구성하여 학습한 결과 99.9%의 인식률을 얻었다. 한 이미지 당 평균 소요시간은 검출 단계는 0.013초, 문자 인식은 0.65초, 적산 단계는 0.16초로 총 0.84초의 결과를 얻었다.
이 연구의 목적은 소아의 치근단 방사선 사진에서 인접면 우식증 객체 탐지 의 객체 탐지를 위해 YOLO (You Only Look Once)를 사용한 모델의 성능을 평가하는 것이다. M6 데이터베이스에서 학습자료군으로 2016개의 치근단 방사선 사진이 선택되었고 이 중 1143개는 한 명의 숙련된 치과의사가 주석 도구를 사용하여 인접면 우식증을 표시하였다. 표시한 주석을 데이터 세트로 변환한 후 단일 합성곱 신경망(CNN) 모델을 기반으로 하는 YOLO를 데이터 세트에 학습시켰다. 187개의 평가자료군에서 객체 탐지 모델 성능 평가를 위해 정확도, 재현율, 특이도, 정밀도, NPV, F1-score, PR 곡선 및 AP를 계산하였다. 결과로 정확도 0.95, 재현율 0.94, 특이도 0.97, 정밀도 0.82, NPV 0.96, F1-score 0.81, AP 0.83으로 인접면 우식증 탐지에 좋은 성능을 보였다. 이 모델은 치과의사에게 치근단 방사선 사진에서 인접면 우식증 병변을 객체 탐지하는 도구로 유용하게 사용될 수 있다.
제조업의 안전보건 기준은 다양한 항목이 존재하지만, 질병 재해자 기준에서 업무상 질병과 근골격계 질환으로 나눌 수 있다. 이 중 근골격계 질환은 제조업에서 가장 많이 발생하며, 나아가서 제조 현장의 노동생산성감소 및 경쟁력 약화까지 유발할 수 있어서 이를 사전에 확인할 수 있는 시스템이 필요한 실정이다. 본 논문에서는 제조업 노동자의 근골격계 유해 요인을 검출하기 위하여 근골격계 부담작업 요인 분석 데이터 속성, 유해 요인 작업자세, 관절 키포인트를 정의하고 인공지능 학습용 데이터를 구축하였다. 구축한 데이터의 유효성을 판단하기 위해서 YOLO, Dite-HRNet, EfficientNet 등의 AI 알고리즘을 활용하여 학습하고 검증하였다. 실험 결과 사람 탐지 정확도는 99%, 탐지된 사람의 관절 위치 추론 정확도는 @AP0.5 88%, 추론된 관절 위치를 종합하여 자세를 평가한 정확도는 LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, LOWERARM 92.7%를 도출하였으며, 추가로 딥러닝 기반의 근골격계 질병을 예방할 수 있는 연구에 필요한 요소를 고찰하였다.
수산자원의 지속 가능한 관리와 증대는 전 세계적으로 중요한 이슈로 부상하고 있으며, 본 연구는 이에 대응하는 한국수산자원공단의 수산자원 현존량 추정을 위한 딥러닝 기반 수산자원 증대사업 효과조사 기법 개발을 위해 구성 기술 중 하나인 어류 탐지 및 분류 모델 구축과 성능 비교를 수행하였다. 다양한 크기의 YOLOv8-Seg 모델에 어류 이미지 데이터셋을 학습한 후 각 성능평가 지표를 비교 분석하여 적용 가능한 최적의 모델을 선정하고자 하였다. 모델 구축에 사용된 자료는 총 12종의 어류로 이루어진 36,749장의 이미지와 라벨 파일로 이루어지며, 학습에는 증강을 적용하여 데이터의 다양성을 증가시켰다. 동일한 환경 및 조건에서 총 다섯 개의 YOLOv8-Seg 모델을 학습 및 검증한 결과 중간 크기의 YOLOv8m-Seg 모델이 가장 짧은 13시간 12분의 학습 시간과 mAP50:95 0.933, 추론 속도 9.6 ms로 높은 학습 효율성과 우수한 탐지 및 분류 성능을 보였으며, 각 지표 간의 균형을 고려할 때 실시간 처리 요구사항을 충족하는 가장 효율적인 모델로 평가되었다. 이와 같은 실시간 어류 탐지 및 분류 모델을 활용하여 효율적인 수산자원 증대사업의 효과조사가 가능할 것으로 보이며, 지속적인 성능 개선 및 추가적인 연구가 필요할 것으로 사료된다.
운용 가능한 위성의 수가 증가하고 기술이 진보함에 따라 영상정보의 성과물이 다양해지고 많은 양의 자료가 축적되고 있다. 본 연구에서는 기구축된 영상정보를 활용하여 부족한 훈련자료의 문제를 극복하고 딥러닝(deep learning) 기법의 장점을 활용하고자 전이학습과 변화탐지 네트워크를 활용한 고해상도 위성영상의 변화탐지를 수행하였다. 본 연구에서 활용한 딥러닝 네트워크는 공간 및 분광 정보를 추출하는 합성곱 레이어(convolutional layer)와 시계열 정보를 분석하는 합성곱 장단기 메모리 레이어(convolutional long short term memory layer)로 구성되었으며, 고해상도 다중분광 영상에 최적화된 정보를 추출하기 위하여 커널(kernel)의 차원에 따른 정확도를 비교하였다. 또한, 학습된 커널 정보를 활용하기 위하여 변화탐지 네트워크의 초기 합성곱 레이어를 고해상도 항공영상인 ISPRS (International Society for Photogrammetry and Remote Sensing) 데이터셋에서 추출된 40,000개의 패치로 학습된 값으로 초기화하였다. 다시기 KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) 영상에 대한 실험 결과, 전이학습과 딥러닝 네트워크를 활용할 경우 기복 변위 및 그림자 등으로 인한 변화에 덜 민감하게 반응하며 분류 항목이 달라진 지역의 변화를 보다 효과적으로 추출할 수 있었으며, 2차원 커널보다 3차원 커널을 사용할 때 변화탐지의 정확도가 높았다. 3차원 커널은 공간 및 분광정보를 모두 고려하여 특징 맵(feature map)을 추출하기 때문에 고해상도 영상의 분류뿐만 아니라 변화탐지에도 효과적인 것을 확인하였다. 본 연구에서는 고해상도 위성영상의 변화탐지를 위한 전이학습과 딥러닝 기법의 활용 가능성을 제시하였으며, 추후 훈련된 변화탐지 네트워크를 새롭게 취득된 영상에 적용하는 연구를 수행하여 제안기법의 활용범위를 확장할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.